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There are seven questions equally weighted at 30 points each.  Choose six of them.  You get 20 
points for signing your name and stapling all your answers together, for a total of 200 points.  
Allocate your time carefully.  Your answers will be graded on content, not style.  For code 
answers, any kind of pseudocode is fine as long as its meaning is clear.  For written answers to 
“essay” questions, please do not waste any words.  You have 75 minutes.

1. An EventPair object synchronizes a pair of threads (a server and a client) for a stream of 
request/response interactions.  The server thread waits for a request by calling Event-
Pair::Wait().   The client issues a request by placing data in shared memory and calling 
EventPair::Handoff().  Handoff wakes up the server thread and simultaneously blocks the 
client to wait for the reply.  The server thread eventually places the reply in shared memory 
and calls Handoff again; this wakes up the client to accept the response, and simultaneously 
blocks the server to wait for the next request.

a)  Show how to implement EventPair using mutexes and condition variables.

b)  Show how to implement EventPair using semaphores.

2. In Nachos Lab #3 you implemented a classical producer/consumer bounded buffer object in 
the BoundedBuffer class.  Let’s assume that your implementation functions correctly.

a) Suppose a BoundedBuffer is used by N readers and N writers (no thread is both a reader 
and a writer).  Is deadlock possible?  Explain.

b) Suppose the threads are exchanging information through a collection of BoundedBuffer 
objects, and each thread is both a reader and a writer.  Is deadlock possible?  Explain.

3. Suppose threads A and B execute on two separate CPUs in a device attached to a network. 
Within the device, data is passed through BoundedBuffer objects in shared memory.  A 
sequence of one-kilobyte request messages arrive from the network at an average rate of ten 
per second, and are placed by the network into a BoundedBuffer read by A.  A uses an aver-
age of 60 milliseconds of CPU time to process each message, then writes the modified mes-
sage (still one kilobyte) into a second BoundedBuffer read by B.  B also uses an average of 
60 milliseconds of CPU time to process each message before posting a response message to 
the network.  Assume that Little’s Law holds in this example.

a) What is the throughput of this system? 

b) What is the average utilization of each CPU?   What is the average delay from the time an 
input message arrives to the time the resulting output message appears?

c) How much buffer space must each BoundedBuffer provide to avoid overflow?  [Note: you 
may assume that the worst-case queue length is at most twice the average.]



d) How will the system behave if its designers attempt to reduce cost by running  A and B on 
the same CPU?  What is the throughput of the low-cost version?  What is its response time?

4. What is priority inversion, and why is it bad?  Illustrate with an example.  Use your example 
to illustrate one technique that avoids priority inversion.

5. Compare and contrast Round Robin scheduling with Shortest Job First (SJF) scheduling.  
Briefly discuss the strengths and weaknesses of each scheme with respect to the usual goals 
of a CPU scheduler.  Why do most modern CPU schedulers combine Round Robin and SJF 
by favoring I/O bound jobs that have short CPU service demands?

6. Barriers are useful for synchronizing threads, typically between iterations of a parallel pro-
gram.  Each barrier object is created for a specified number of  “slave” threads and one 
“master” thread.  Barrier objects have the following methods:

Create (int n) -- Create barrier for n slaves.
Arrive () -- Slaves call Arrive when they reach the barrier.
Wait () -- Block the master thread until all slaves have arrived.
Release () -- Master calls Release to wake up blocked slaves (all slaves must have arrived).

Initially, the master thread creates the barrier, starts the slaves, and calls Barrier::Wait, 
which blocks it until all threads have arrived at the barrier. The slave threads do some work 
and then call Barrier::Arrive, which puts them to sleep.  When all threads have arrived, the 
master thread is awakened.  The master then calls Barrier::Release to awaken the slave 
threads so that they may continue past the barrier.  Release implicitly resets the barrier so 
that released slave threads can block on the barrier again in Arrive.

Show how to implement Barrier using mutexes and condition variables.

7. In traditional uniprocessor Unix kernels, synchronization of processes executing system call 
code hinges on the following property: when a process enters the kernel via a system call 
trap, it becomes non-preemptible, i.e., the scheduler will not force it to relinquish the CPU 
involuntarily.  A process in kernel mode continues executing until it returns from the system 
call or blocks in sleep.

a) How can the kernel use this property to prevent race conditions among processes execut-
ing system call code?  What other constraints must the kernel observe for kernel-mode pro-
cesses to be safe from these races?

b) Is this scheme sufficient to prevent kernel race conditions in the presence of interrupts?  If 
not, explain the difficulties and show how to extend the scheme to handle these cases.

c) (extra credit) Modern operating systems for shared memory multiprocessors are “sym-
metric”, which means that any processor may service traps or interrupts.  On these systems, 
the uniprocessor synchronization schemes in (a) and (b) are  generally still necessary but are 
not sufficient.  Why are they not sufficient?  Explain the difficulties and show how to extend 
the scheme to handle the new cases.


