CS 6420 Operating Systems Summer Quarter, 1999
Midterm

Friday July 16, 1998

Reminder: OPEN Book and OPEN Notes

1. Anderson’s Array Based Queueing Lock(20 points)

Anderson’s array based queueing lock is shown below, with Mellor-Crummey’s correction,
and Riley’s correction to Mellor-Crummey’s correction. This version assumes numprocs is 4,
meaning we have exactly four CPU’s which can be contending for the lock. The pseudo-code
is given in a C-like format, rather than the Pascal-like format in the paper. Pay careful
attention to the initialization of the fields in the Lock structure, which is slightly different
than that given in the paper. Think carefully about parts a and b.

(a) As coded below, what is the smallest and largest (ie. the range of values) that will ever
be assigned to variable Lock.nextslot?

(b) As coded below, and remembering that each processor has a private copy of variable
myplace, what is the smallest and largest (ie. the range of values) that any instance of
variable myplace can be assigned?

(c) Variable Lock.slots is shown to be initialized to [T, F,F,F]. During normal execution of
the algorithm, is it possible that Lock.slots will have the value [F,F,F,F]? If so, explain
what this means, or if not explain why not.

(d) ls it possible for variable Lock.slots to have the value [T,T,T,T]? Is so, explain what this
means, or if not explain why not.

#define F O

#define T 1

#define numprocs 4

typedef struct {
int slots[numprocs] = {T, F, F, F};
int nextslot = numprocs;

} Lock;

void acquire_lock(Lock* L, int* myplace);

{
*myplace = fetch_and_increment (&L->nextslot);
if ((*myplace % numprocs) == 0) /* }, is the mod operator */

atomic_add(&L->nextslot, -numprocs);

*myplace = *myplace J, numprocs;
while(L->slots[*myplace] == F) spin;
L->slots[*myplace] = F;

+
void release_lock(Lock* L, int* myplace)
{
L->slots[(*myplace + 1) ¥ numprocs] = T;
+

2. Barriers (20 points)

The code for BuggyBarrier2 that we discussed in class, along with the Sense Reversing Cen-
tralized Barrier (Mellor-Crummey algorithm 7, slightly modified) is shown below.

(a)
(b)

(c)

What is the problem with BuggyBarrier2? Explain in detail why it cannot work.

The Sense Reversing barrier is quite similar to BuggyBarrier2, but it is in fact correct.
Explain how the Sense Reversing barrier corrects the problem with BuggyBarrier?2.

Notice that the Sense Reversing barrier shown below has added a processor private
variable Barrier Invocation Number (BIN), which simply counts by one each time the
Central_Barrier routine is entered. Is it possible for some processor to be executing in
routine Central_Barrier with BIN = k (k > 2) at the same time as some other processor
in also executing in routine Central_Barrier with BIN = (k—1)7 If so explain how this
can happen, or explain why not.

Is it possible for some processor to be executing in routine Central_Barrier with BIN =
k (k> 2) at the same time as some other processor in also executing in routine Cen-
tral_Barrier with BIN = (k — 2)? If so explain how this can happen, or explain why
not.

Algorithm BuggyBarrier2, by George Riley

1 shared int CountBarrier = 0;
2 Procedure BuggyBarrier2

3 mycount = FetchAndIncrement(CountBarrier);

4 if(mycount == (numprocs - 1)) {

5 CountBarrier = 0; // All there, let others know and reset
6 else

7 while(CountBarrier != 0) spin // Wait for others

Sense-Reversing Centralized Barrier

shared int CountBarrier = P;
shared Boolean sense = TRUF;
processor private Boolean local sense = TRUF;
processor private int BIN = 0;
Procedure Central _Barrier
BIN = BIN + 1;
local_sense = NOT local_sense;
mycount = FetchAndDecrement(CountBarrier);
9 if(mycount == 1) {
10 CountBarrier = P; // All there, reset count for next pass
11 sense = local_sense; // All there, let others know
12 else
13 while(Sense != local_sense) spin // Wait for others

0 =~ O T = W N =

3. Filaments (20 points) For this question, assume we are running on a platform with 4 CPU’s,
and we are creating 4 servers in our filaments code (ie. we are calling f_initialize(4).

(a) The code for sequential_code on page 5 is reproduced below. Notice that on line 3 the
variable k is incremented, but not atomically. Keeping in mind that we have defined 4
servers, it this an error? Should we have used an atomic increment here? Explain why
or why not.

(b) Refering to the main program at the bottom on page 5, give pseudo code or a verbal
explanation of what the subroutine £f_iterative_thread has to do to work properly.

1 sequential_code()

2 real** temp;

3 k++

4 if (k > MAXITERS or maxdiff < EPSILON) then return DONE
5 temp = old; old = new; new = temp;

6 maxdiff = 0.0

7 return NOTDONE

8 end

4. Remote Procedure Calls (20 points)

(a) Why is it necessary for the RPC Server to buffer the Reply blocks for possible later
reuse?

(b) Of the RPC server application, RPC server stub, or RPC server runtime (see fig. 1 in
the RPC paper), which of these does the buffering of the Replies?

(c) When can these buffered reply blocks be discarded?

(d) What is the purpose of the random value Y in the RFA message shown in fig 2 of the
Secure RPC paper?

(e) Assume that an RPC client is system A and the RPC server is system B. The protocol
for the Request for Authenticator RFA message between B and A is somewhat complex.
It would seem simpler just to have B ask the KDC for the conversation key (which would
of course be given encrypted with B’s private key). Give two reasons why Birrell did
not design it this way.

5. Active Messages (20 points)
(a) Give two reasons why an implementation of RPC’s using active messages can perform

so much better than traditional RPC’s.

(b) Explain two problems with the original design of active messages that the Optimistic
active messages design is attempting to solve. How does it solve them?

¢) Why does the performance of Optimistic active messages drop off so dramtically as the
g
number of processes increases above a certain threshold (see figure 2 in the Wallach

paper).

