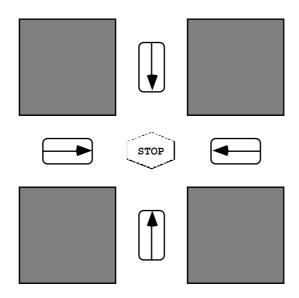
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 222 — ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ (3 Δ.Μ.)

Απαδημαϊπό Έτος 1998-99, 60 Εξάμηνο

Εξέταση Ημιεξαμήνου


Ημερομηνία : 22 Αποιλίου 1999

Διάφκεια εξέτασης : 1:30 ώφες

Διδάσκων καθηγητής : Γιώργος Α. Παπαδόπουλος

Απαντήστε και τις δύο ερωτήσεις (50% η κάθε ερώτηση).

1. Στο παρακάτω σχήμα παρουσιάζεται ένας κυκλικός κόμβος (roundabout) όπου αυτοκίνητα από τις 4 πλευρές προσπαθούν να εισέλθουν σε αυτόν.

- α) Αν το κυκλικό STOP εφμηνεύεται ότι "προτεραιότητα έχει το αυτοκίνητο που έρχεται από δεξιά", αποφεύγεται το αδιέξοδο; Ναι/Οχι και γιατί.
- β) Αντί για το κυκλικό STOP, σχεδιάστε ένα ηλεκτρονικό σύστημα εισδοχής αυτοκινήτων στον κυκλικό κόμβο με χρήση παρακολουθητών (monitors). Η λύση σας θα πρέπει να αποφεύγει φαινόμενα αδιέξοδου και παρατεταμένης στέρησης.

2. α) Αναφορικά με τον ακόλουθο κώδικα:

όπου οι διεργασίες X και Y εκτελούνται με μη προκαθορισμένη συμπεριφορά (μέσα σε ένα cobegin ... coend μπλοκ) το ζητούμενο είναι οι ομάδες εντολών A, B, C, D να εκτελεστούν με αυτή ακριβώς τη σειρά. Για τον σκοπό αυτό καλείστε να χρησιμοποιήσετε τους σημαφόρους s και t στις περιοχές του κώδικα που σημειώνονται με (και μόνο εκεί). Μπορείτε να χρησιμοποιήσετε περισσότερους από ένα σημαφόρους σε κάθε τέτοια περιοχή.

β) Αναφορικά με τον ακόλουθο κώδικα:

semaphore
$$K:=0$$
, $F:=1$, $G:=1$, $H:=1$, $J:=1$, $L:=3$, $E:=5$; integer count:=0;

Process A	<u>Process B</u>	<u>Process C</u>	<u>Process D</u>
	wait(G)		
	count++		
wait(K)	if count=1		
signal(J)	then wait(H)	wait(F)	wait(L)
wait(E)	signal(G)	wait(E)	wait(J)
<kp tmhma=""></kp>	<kp tmhma=""></kp>	<kp tmhma=""></kp>	<kp tmhma=""></kp>
signal(E)	signal(K)	signal(E)	signal(F)
	wait(G)		signal(L)
	count		
	if count=0		
	then signal(H)	1	
	signal(G)		

μέσα σε ένα cobegin ... coend μπλοκ τρέχουν w διεργασίες τύπου Α, x διεργασίες τύπου Β, y διεργασίες τύπου C και z διεργασίες τύπου D, όπου τα x,

- y, z, w είναι όλα μεγαλύτερα του 10. Απαντήστε στις ακόλουθες ερωτήσεις:
- (i) Υποστηρίζεται αμοιβαίος αποκλεισμός μεταξύ των διεργασιών τύπου Α και C;
- (ii) Για να μπορέσει μία διεργασία τύπου D να εκτελέσει το κρίσιμο τμήμα της, πρέπει απαραίτητα τουλάχιστον μία διεργασία τύπου C να εκτελέσει το δικό της κρίσιμο τμήμα;
- (iii) Πόσες διεργασίες τύπου Β μπορούν να βρίσκονται ταυτόχρονα μέσα στα κρίσιμα τμήματά τους;
- (iv) Ποιος είναι ο μέγιστος αφιθμός διεφγασιών τύπου Α που μποφούν να βρίσκονται ταυτόχρονα μέσα στα κρίσιμα τμήματά τους;
- (v) Για να μπορέσει μία διεργασία τύπου Α να εκτελέσει το κρίσιμο τμήμα της, πρέπει απαραίτητα τουλάχιστον μία διεργασία τύπου Β να εκτελέσει το δικό της κρίσιμο τμήμα;
- (vi) Υποστηρίζεται αμοιβαίος αποκλεισμός μεταξύ των διεργασιών τύπου Α και Β:
- (vii) Πόσες διεργασίες τύπου D μπορούν να βρίσκονται ταυτόχρονα μέσα στα κρίσιμα τμήματά τους;

Καλή Επιτυχία!