
Internet Technologies
Introduction to HTML and CSS - Part 4

Responsive Webpage Development

Responsive web design

• Use HTML and CSS to automatically resize, hide, shrink, or enlarge
components of a website (images, buttons, forms, tables, font sizes,
margin, padding), to make the website look good on all devices

Mobile Phones
Tablets

Desktops

Q: How do we do this?

Do we need to write totally
different CSS for every

screen size??

Meta viewport tag

• A typical mobile-optimized site contains something like the following:

• Sets the viewport of a webpage: gives the browser instructions on
how to control the page's dimensions and scaling.

• This belongs in the <head> section of your HTML.
o Same section as the <title>, <link>, and other metadata elements.

<meta name="viewport"
content="width=device-width, initial-scale=1">

Without
the meta
viewport
tag

With
the meta
viewport
tag

You should always include this tag in your HTML

Making adjustments

• The meta viewport tag gets us almost all the
way there, but we want to make a few
adjustments.

• For example, the margin seems too big on
mobile. Can we set a different margin
property for mobile?

CSS media queries

• You can define a CSS media query in order to
change style rules based on the characteristics
of the device:

• You can create much more complex media
queries as well.

@media (max-width: 500px)
{
 .article {
 margin: 0 2px;
 }
}

CSS

https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

Media rules

@media (min-width: 1281px) {
 /* desktops layout */
}
@media (min-width: 1025px) and (max-width: 1280px) {
 /* laptops and desktops */
}
@media (min-width: 768px) and (max-width: 1024px) {
 /* tablets (portrait) */
}
@media (min-width: 768px) and (max-width: 1024px) and (orientation: landscape) {
 /* tablets landscape */
}
@media (min-width: 481px) and (max-width: 767px) {
 /* low resolution tablets, mobile phones (landscape) */
}
@media (min-width: 320px) and (max-width: 480px) {
 /* mobile phones portrait */
}

CSS

Retina media queries for high resolution mobile displays: https://css-tricks.com/snippets/css/retina-display-media-query/

https://css-tricks.com/snippets/css/retina-display-media-query/

Example with images

• Webpage with 2 images, side-by-side

• We want images sizes to be responsive to browser width

Example with images

<body>
 <div class="row">
 <div class="col">

 </div>
 <div class="col">

 </div>
 </div>
</body>

HTML .col {
 float: left;
 width: 384px;
}

CSS

Example with images

640px

1280px

Why images are not bounded to 384px?

384px

Example with images

640px

1280px

Why images are not bounded to 384px? Because the don’t have a specified width. So they
overflow the div.

384px

Example with images

384px

We can hide the overflowing content but this is not always desirable!

384px

overflow: hidden;
}

Example with images

384px
384px

img {
 width: 384px;
}

CSS

There is still problem since images
is not responsive to different
screen sizes!!!

Another solution to have the whole image visible… set an image width to match the containing div
width…

Example with images

.col {
 float: left;
 width: 50%;
}

CSS

Image width needs to be specified as
well …

Another solution towards responsiveness… use percentages

Example with images

.col {
 float: left;
 width: 50%;
}

img {
 width: 50%;
}

CSS

Example with images

.col {
 float: left;
 width: 50%;
}

img {
 width: 100%;
}

CSS

There is still a small problem since
images is not of the same height.

Example with images

There is still a small problem since
images’ aspect ratio is distorted.

.col {
 float: left;
 width: 50%;
 height: 500px;
}

img {
 width: 100%;
 height: 100%;
}

CSS

Example with images

The CSS object-fit property is used to specify
how an or <video> should be resized to
fit its container.
object-fit: cover; cuts off the sides of the
image, preserving the aspect ratio, and also filling
in the space. See also object-position

.col {
 float: left;
 width: 50%;
 height: 500px;
}

img {
 width: 100%;
 height: 100%;
 object-fit: cover;
}

CSS

https://developer.mozilla.org/en-US/docs/Web/CSS/object-position

Important notice

• By default in the CSS box model, the width and height you assign to
an element is applied only to the element's content box.

• If the element has any border or padding, this is then added to the
width and height to arrive at the size of the box that's rendered on
the screen.

• When you set width and height, you have to adjust the value you give
to allow for any border or padding that may be added.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model

Development strategies

• Practical question: How do you test mobile layouts?
oDo you upload your HTML+CSS somewhere online and navigate to that URL

on your phone?

o Is there a way to connect your mobile phone to your local (laptop/deskop)
device?

oDo you run it in an Android/iOS emulator?

oOther?

Chrome device mode

• You can simulate a
web page in a
mobile layout via
Chrome device
mode:
oOn website: Right

click, and then
select Inspect

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

• You can simulate a
web page in a
mobile layout via
Chrome device
mode:
oOn website: Right

click, and then
select Inspect

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

• Advantages of Chrome device mode:
o Super convenient

oMostly accurate

• Disadvantages of Chrome device mode:
oNot always accurate

o iPhone particularly an issue

oA little buggy

oDoesn't simulate performance issues

• You should always test on real devices, too.

Chrome remote debugging

• If you have an Android phone, you can debug web pages on your
phone via Chrome remote debugging.

https://developers.google.com/web/tools/chrome-devtools/remote-debugging/

Safari remote debugging

• If you have an iPhone, you can debug web pages on your phone via
Safari remote debugging.

http://developer.telerik.com/featured/a-concise-guide-to-remote-debugging-on-ios-android-and-windows-phone/

Access local web server from mobile phone

• Run a web server locally on your laptop/desktop
o E.g. run XAMPP locally

• Connect laptop/desktop and mobile phone in the same network (e.g., in
the same WiFi)

• Find the IP of your laptop/desktop (where web server runs)
o type ipconfig (into CMD for Windows) or ifconfig (into terminal for Unix)

➢sudo apt-get install net-tools to install ifconfig on Unix

• On your mobile phone browser type
http://WEBSERVER-IP-ADDRESS/index.html
(index.html can be omitted)

Mobile summary

• Always add the meta viewport tag

• Use @media queries to add styles for devices with certain characteristics,
such as screen width

• Use the Chrome Device Mode to simulate mobile rendering on desktop

• For height and width, prefer percentages

• Autoscale image and videos to fit in screen region

• For fonts, prefer em and rem (see Appendix)

• Try to minimize dependent rules
o Changing the width of one container force you to change 15 other properties to look

right

• More on responsive web design

https://developers.google.com/web/fundamentals/design-and-ui/responsive/

Exercise 1

• Create the responsive webpage shown in the next slides using the
given guidelines.

Exercise 1
screen-size >= 1024

• SEE NEXT
SLIDES FOR
MORE DETAILS

• CSS code for
screen sizes >=
1024px can be
placed outside
media queries

Exercise 1
screen-size >= 1024

<div class="section">

<div class="section">

<h1>
<h2>

<h2>
<p>

• h1: 1.5em
• h2: 1.2em
• Images height

500px, margin
right & bottom
1%, object-fit:
cover (set the
width properly)

500px
row class: width 100%

left class: width 50%

right class: width 50%

2 columns can be created either:
a) using position attribute or
b) using float attribute
Both solutions will be given!

Exercise 1
screen-size < 1024

<div class="section">

<div class="section">

<h1>

<h2>

<h2>

<p>

• h1: 1.5em
• h2: 1.2em
• Images height:

250px, only margin
bottom 10px

• Border 3px with
color #D9D4C6 and
padding 4px

• Use media queries
for styling rules
that are modified in
smaller screens

250px

APPENDIX: Relative font sizes
percent, em, rem

Relative units

• Whenever possible, it's best to use relative units (like percentage)
instead of absolute units (like px).

• Advantages:
oMore likely to work on different screen sizes

o Easier to reason about; fewer magic numbers
10% / 80% / 10% vs 122px / 926px / 122px

Relative font sizes: percent

• You can define font sizes in terms of percentage:

<body>
 <h1>This is 60px</h1>
 <p>This is 15px</p>
</body>

body {
 font-size: 30px;
}
h1 {
 font-size: 200%;
}
p {
 font-size: 50%;
}

CSS

HTML

Relative font sizes: percent

• Percent on font-size behaves exactly like percentage on width and
height, in that it's relative to the parent:
<div>
 This is 60px
 <p>This is 45px</p>
</div>

body {
 font-size: 30px;
}
div {
 font-size: 200%;
}
p {
 font-size: 75%;
}

CSS

HTML

Relative font sizes: percent

• Percent on font-size behaves exactly like percentage on width and
height, in that it's relative to the parent:
<div>
 This is 60px
 <p>This is 45px</p>
</div>

body {
 font-size: 30px;
}
div {
 font-size: 200%;
}
p {
 font-size: 75%;
}

CSS

HTML

p is 75% of its parent, which is 200% of 30px.
p's size: 0.75*2*30 = 45px

Relative font sizes: em

• But instead of percentages, relative font sizes are usually defined in
terms of em

• em represents the calculated font-size of the element
o1em = the inherited font size

o2em = 2 times the inherited font size

• In other words,

font-size: 1em; is the same as font-size: 100%;

Relative font sizes: em

<body>
 <h1>This is 60px</h1>
 <p>This is 15px</p>
</body>

body {
 font-size: 30px;
}
h1 {
 font-size: 2em;
}
p {
 font-size: .5em;
}

CSS

HTML

Relative font sizes: em

<div>
 This is 60px
 <p>This is 45px</p>
</div>

body {
 font-size: 30px;
}
div {
 font-size: 2em;
}
p {
 font-size: .75em;
}

CSS

HTML

Relative font sizes: em

<div>
 This is 60px
 <p>This is 45px</p>
</div>

body {
 font-size: 30px;
}
div {
 font-size: 2em;
}
p {
 font-size: .75em;
}

CSS

HTML

p's inherited font size is 2em, which is 60px.
p's size: 0.75em*60 = 45px

Relative font sizes: em

<body>
 This is
 <h1>
 120px
 </h1>
</body>

body {
 font-size: 30px;
}
strong {
 font-size: 2em;
}

CSS

HTML

Wait, why is 120px and not 60px?

Relative font sizes: em

<body>
 This is
 <h1>
 120px
 </h1>
</body>

body {
 font-size: 30px;
}
strong {
 font-size: 2em;
}

CSS

HTML

In the Chrome Inspector, we see the default
browser font-size for h1 is 2em.
So it's 30*2*2 = 120px.

Relative font sizes: rem

• If you do not want your relative font sizes to compound through
inheritance, use rem

• rem represents the font-size of the root element (<html>)
o1rem = the <html> font size (which for most browsers has a default value of

16px).

o2rem = 2 times root font size

Relative font sizes: rem

<body>
 <div>
 This is 60px
 <p>This is 22.5px</p>

</div>
</body>

html {
 font-size: 30px;
}
div {
 font-size: 2rem;
}
p {
 font-size: .75rem;
}

CSS

HTML

Relative font sizes: rem

<body>
 <div>
 This is 60px
 <p>This is 22.5px</p>

</div>
</body>

html {
 font-size: 30px;
}
div {
 font-size: 2rem;
}
p {
 font-size: .75rem;
}

CSS

HTML

font-size is set on the
html element, not body (or
any other tag)

Relative font sizes: rem

<body>
 <div>
 This is 60px
 <p>This is 22.5px</p>

</div>
</body>

html {
 font-size: 30px;
}
div {
 font-size: 2rem;
}
p {
 font-size: .75rem;
}

CSS

HTML

.75em is calculated from
the root, which is 30px, so
30*.75 = 22.5px.

Relative font conclusions

• Use relative fonts for the same purpose as using relative heights and
widths:
oPrefer em and rem over percentages

➢Not for any deep reason, but em is meant for font so it's semantically cleaner

oUse rem to avoid compounding sizes

o In addition to font-size, you may consider em/rem for:

➢line-height

➢margin-top

➢margin-bottom

	Slide 1: Internet Technologies
	Slide 2: Responsive web design
	Slide 3: Meta viewport tag
	Slide 4
	Slide 5: Making adjustments
	Slide 6: CSS media queries
	Slide 7: Media rules
	Slide 8: Example with images
	Slide 9: Example with images
	Slide 10: Example with images
	Slide 11: Example with images
	Slide 12: Example with images
	Slide 13: Example with images
	Slide 14: Example with images
	Slide 15: Example with images
	Slide 16: Example with images
	Slide 17: Example with images
	Slide 18: Example with images
	Slide 19: Important notice
	Slide 20: Development strategies
	Slide 21: Chrome device mode
	Slide 22: Chrome device mode
	Slide 23: Chrome device mode
	Slide 24: Chrome remote debugging
	Slide 25: Safari remote debugging
	Slide 26: Access local web server from mobile phone
	Slide 27: Mobile summary
	Slide 28: Exercise 1
	Slide 29: Exercise 1 screen-size >= 1024
	Slide 30: Exercise 1 screen-size >= 1024
	Slide 31: Exercise 1 screen-size < 1024
	Slide 32: APPENDIX: Relative font sizes
	Slide 33: Relative units
	Slide 34: Relative font sizes: percent
	Slide 35: Relative font sizes: percent
	Slide 36: Relative font sizes: percent
	Slide 37: Relative font sizes: em
	Slide 38: Relative font sizes: em
	Slide 39: Relative font sizes: em
	Slide 40: Relative font sizes: em
	Slide 41: Relative font sizes: em
	Slide 42: Relative font sizes: em
	Slide 43: Relative font sizes: rem
	Slide 44: Relative font sizes: rem
	Slide 45: Relative font sizes: rem
	Slide 46: Relative font sizes: rem
	Slide 47: Relative font conclusions

