
Internet Technologies
Introduction to JavaScript (Exercises)

Involve JavaScript in web pages

<!DOCTYPE html>
<html>
 <head>
 <title>CS 425</title>
 <link rel="stylesheet" href="style.css" />
 <script src="script.js"></script>
 </head>
 <body>
 ... contents of the page...
 </body>
</html>

JavaScript execution

• There is no "main method"
o The script file is executed from top to bottom.

• There's no compilation by the developer
o JavaScript is compiled and executed on the fly by the browser

Same as Java/C++/C-style languages

• for-loops:
for (let i = 0; i < 5; i++) { ... }

• while-loops:
while (notFinished) { ... }

• comments:
// comment or /* comment */

• conditionals (if statements):
if (...) {

... }
else {

... }

Variables: var, let, cons

• Declare a variable in JS with one of three keywords:

• You do not have to declare the datatype of the variable before using it
("dynamically typed")

// Function scope variable
var x = 15;
// Block* scope variable {}
let fruit = 'banana';
// Block scope constant; cannot be reassigned
const isHungry = true;

JS (*) A block is a group of 0 or
more statements, usually
surrounded by curly braces

http://stackoverflow.com/questions/1517582/what-is-the-difference-between-statically-typed-and-dynamically-typed-languages

Variables best practices

• Use const whenever possible.

• If you need a variable to be reassignable, use let.

• Not doing so will result in global variables.
oWe want to avoid polluting the global namespace.

• Avoid using var.
o You will see a ton of example code on the internet with var

since const and let are relatively new.

oHowever, const and let are well-supported, so there's no
reason not to use them.

o (This is also what the Google and AirBnB JavaScript Style
Guides recommend.)

Aside: The
internet has a

ton of
misinformation

about JavaScript!

Including several
"accepted"

StackOverflow
answers, tutorials, etc.
Lots of stuff online is

years out of date.
Treat carefully.

https://google.github.io/styleguide/jsguide.html#features-use-const-and-let
https://github.com/airbnb/javascript#variables

Equality

• JavaScript's == and != are basically
broken: they do an implicit type
conversion before the comparison.

• Instead of fixing == and != , the
ECMAScript standard kept existing
behavior but added === and !==

Always use === and !== and don't use == or !=

Functions

• One way of defining a JavaScript function is with the following syntax:

function name() {
 statement;
 statement;
 ...
 return ...
}

JS

Function example

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

hello();
hello();

JS

The browser "executes" the function
definition first, but that just creates the
hello function (and it doesn't run the hello
function), similar to a variable declaration.

Console output:

Function example

hello();
hello();

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

JS

• This works because function declarations
are "hoisted" (mdn)

• Try not to rely on hoisting when coding. It
gets bad.

Console output:

JavaScript Hoisting refers to the process whereby the
interpreter appears to move the declaration of

functions, variables or classes to the top of their scope,
prior to execution of the code.

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html
http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html

Variable Hoisting

• Do you know what value will be printed in console if the following is
executed as a JavaScript program?

• Undefined is for a variables that has been declared but has not yet
been assigned a value. So, why undefined?

console.log(foo);
var foo = 10;

JS

var foo; // foo is hoisted
console.log(foo);
foo = 10; JS

// undefined

is actually interpreted like this:

Variable Hoisting

• Do you know what value will be alerted if the following is executed as
a JavaScript program?

var foo = 1;
function bar() {
 alert(foo); // undefined
 if (!foo) {
 var foo = 10;
 }
 alert(foo); // 10
}
bar();

JS
var foo = 1;
function bar() {
 var foo; // declaration is hoisted
 alert(foo); // var has function scope
 if (!foo) {
 foo = 10;
 }
 alert(foo);
}
bar();

JS

When foo is re-
declared, it
overwrites the
global foo.

Variable Hoisting

• Do you know what value will be alerted if the following is executed as
a JavaScript program?

var foo = 1;
function bar() {
 alert(foo); // 1
 if (!foo) {
 let foo = 10;
 }
 alert(foo); // 1
}
bar();

JS

• Let has block scope is not hoisted outside of its block
• foo has the value of 1 inside function (from the global foo

assignment)
• Condition within the if statement is true, foo is assigned

the value 10 within the block
• Outside the if statement block, foo maintains its global

value

Arrays

• Arrays are Object types used to create lists of data.

o0-based indexing

oMutable (can be modified in the same memory location)

oCan check size via length property (not function)

// Creates an empty list
let list = [];
let groceries = ['milk', 'cocoa puffs'];
groceries[1] = 'kix';

JS

Arrays – Iterating through array

• You can use the familiar for-loop to iterate through a list:

• Or use a for-each loop via for...of (mdn):
(intuition: for each item of the groceries list)

let groceries = ['milk', 'cocoa puffs', 'tea'];
for (let i = 0; i < groceries.length; i++) {
 console.log(groceries[i]);
}

JS

let groceries = ['milk', 'cocoa puffs', 'tea'];
for (let item of groceries) {
 console.log(item);
}

JS

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

let arr = [5,10,15];
let len = arr.length; // array length: 3
arr[1]; // second element of the array (index starts at 0): 10
arr.push(1); // adds new item(s) to the end: [5,10,15,1]
arr.push(2,3); // [5,10,15,1,2,3]
arr.pop(); // removes last item and returns it’s value, [5,10,15,1,2]
arr.shift(); // removes first element and returns it’s value, [10,15,1,2]
arr.unshift(0); // adds new item(s) to beginning, [0,10,15,1,2]
arr.reverse(); // reverses the array in place, [2,1,15,10,0]
arr.concat([9,8]); // merges 2 or more arrays.Arrays unmodified. Returns new array: [2,1,15,10,0,9,8]
arr.slice(2,4); // returns a copy of a portion of an array into a new array: [15,10]
arr.find(function check(i) { return i >= 5; });

// returns the value of the first element in array that pass test: 15
arr.findIndex(function check(i) { return i >= 5; });

// returns the index of the first element in array that pass test: 2
arr.filter(function check(i) { return i >= 5; });

// creates new array with every element in array that pass test: [15,10,9,8]
arr.indexOf(0) // Search the array for an element and returns its position
arr.splice(start[, deleteCount[, item1[, item2[, ...]]]]);

// changes content by removing /or adding elements. start=Index at which to start
changing, deleteCount=number of array elements to remove, item1=element(s) to add
arr.splice(2,1,4,6); // removes one element from index 2 and adds 4,6 in the same index [2,1,4,6,10,0,9,8]
delete arr[1]; // delete but not removes the element: [2,,4,6,10,0,9,8]. Use splice instead.
[5,10,15,1,2,3].sort(); // sort the elements of array in Unicode code point order: [1,10,15,2,3,5]

[5,10,15,1,2,3].sort(function compFunc(a,b) { return a-b; });

// For first iteration a=5 and b=10. If compFunc(a,b) > 0 : sort b to an index
// lower than a, else(<0 or ===0) the two elements will not change indexes

Objects

• Every JavaScript object is a collection of property-value pairs.

• Objects can be initialized using new Object(), Object.create(),
or using the literal notation (initializer notation).

• An object initializer is a comma-delimited list of zero or more pairs of
property names and associated values of an object, enclosed in curly
braces {} as shown below:

// Creates an empty object
const prices = {};
// Non empty object
const scores = { 'peach': 100, 'mario': 88, 'luigi': 91 };

JS

Objects literal notation

• There are two ways to access the value of a property:

1. objectName[property] Ex: console.log(scores['peach']); // 100

2. objectName.property (for string keys) Ex: console.log(scores.peach);

// Creates an empty object
const prices = {};
// Non empty object
const scores = { 'peach': 100, 'mario': 88, 'luigi': 91 };

JS

Objects – Adding property

• To add a property to an object, name the property and give it a value:

const scores = { peach: 100, mario: 88, luigi: 91 };
scores.toad = 72;
let name = 'super';
scores[name] = 102;
console.log(scores);

JS

Objects – Deleting property

• To remove a property to an object, use delete:

const scores = { peach: 100, mario: 88, luigi: 91 };
scores.toad = 72;
let name = 'super';
scores[name] = 102;
delete scores.peach;
console.log(scores);

JS

Objects – Iterating through object

• Iterate through a map using a for...in loop (mdn):
(intuition: for each key in the object)

for (key in object) {
 // … do something with object[key]
}

for (let name in scores) {
 console.log(name + ' got ' + scores[name]);
}

JS

You can't use for...in on lists; only on object types
You can't use for...of on objects; only on list types

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in

Objects – How to transfer between client-
server?

• Strings are lightweight and therefore very useful when transporting data.

oConvert list (arrays) or objects to Strings

o JavaScript Object Notation (JSON) is a standard text-based format for representing
structured data based on JavaScript object syntax

• A JavaScript object can be easily converted to a JSON string using
JSON.stringify() function

• JSON string can easily converted to JavaScript object using JSON.parse()

const obj = {firstname : "Sam", lastname : "Shark", age : 41};
const jsonObj = JSON.stringify(obj);
console.log(jsonObj);

JS

Object to JSON – Examples

let contacts = {
 name :"Timothy",
 age : 35,
 address : {
 street : "1 Main St",
 city : "Montreal"
 },
 interests:["cooking", "biking"]
};

JSlet contacts = {};
contacts.name = "Timothy";
contacts.age = 35;
contacts.address = {};
contacts.address.street = "1 Main St";
contacts.address.city = "Montreal";
contacts.interests = [];
contacts.interests[0] = "cooking";
contacts.interests[1] = "biking";

jsonStr = JSON.stringify(contacts);

conObj = JSON.parse(jsonStr);

Create the whole JavaScript object once OR Create the JavaScript object as data become available

let contacts = {};
contacts["name"] = "Timothy";
contacts["age"] = 35;
contacts["address"] = {};
contacts["address"]["street"] = "1 Main St";
contacts["address"]["city"] = "Montreal";
contacts["interests"] = [];
contacts["interests"][0] = "cooking";
contacts["interests"][1] = "biking";

The
same

JSON.parse()

• When using the JSON.parse() on a JSON derived from an array, the
method will return a JavaScript array, instead of a JavaScript object.

• Date objects are not allowed in JSON. If you need to include a date,
write it as a string. You can convert it back into a date object later:

const text = '["Ford", "BMW", "Audi", "Fiat"]';
const obj = JSON.parse(text);
console.log(obj);

JS

var text = '{ "name":"John", "birth":"1986-12-14", "city":"New York"}';
var obj = JSON.parse(text);
obj.birth = new Date(obj.birth);

JS

Exercises

1. Write JavaScript source code to parse the JSON string shown below and
log, i.e. print using console.log(), the name and age of the person.

JSON string:

{

"name": "Alice",

"age": 28,

"city": "New York"

}

Program output
Name: Alice

Age: 28

To execute a JavaScript file in
VSCode, open terminal and run

the command (NodeJS needed to
be installed – see Lab1):

node file.js
Alternatively, use an online

JavaScript editor.

Exercises

2. Write JavaScript source code to convert the given user data object to a
JSON string and log it.

Object:

const userData = {

name: "Bob",

age: 30,

city: "Los Angeles"

};

Program output
{"name":"Bob","age":30,"city

":"Los Angeles"}

Exercises

3. Write JavaScript source code to parse the following JSON string and
access the city and postal code from the nested address object.

JSON string:

{

"name": "Charlie",

"address": {

"city": "Paris",

"postalCode": "75001"

}

}

Program output
City: Paris

Postal Code: 75001

Exercises

4. Write JavaScript source code to parse the given JSON array string and log
the names of all users.

JSON Array string:

[

{"name": "David"},

{"name": "Emma"},

{"name": "Frank"}

]

Program output
Name: David

Name: Emma

Name: Frank

Exercises

5. Write JavaScript source code to filter the given JSON array and create
new array that includes only users with an age greater than 25 and log
the result (hint: can be done using for loops or an appropriate function in
slide 16)

JSON Array string:

[

{"name": "Jack", "age": 30},

{"name": "Kelly", "age": 22},

{"name": "Leo", "age": 28}

]

Program output
[{ name: 'Jack', age: 30 },

{ name: 'Leo', age: 28 }]

	Slide 1: Internet Technologies
	Slide 2: Involve JavaScript in web pages
	Slide 3: JavaScript execution
	Slide 4: Same as Java/C++/C-style languages
	Slide 5: Variables: var, let, cons
	Slide 6: Variables best practices
	Slide 7: Equality
	Slide 8: Functions
	Slide 9: Function example
	Slide 10: Function example
	Slide 11: Variable Hoisting
	Slide 12: Variable Hoisting
	Slide 13: Variable Hoisting
	Slide 14: Arrays
	Slide 15: Arrays – Iterating through array
	Slide 16
	Slide 17: Objects
	Slide 18: Objects literal notation
	Slide 19: Objects – Adding property
	Slide 20: Objects – Deleting property
	Slide 21: Objects – Iterating through object
	Slide 22: Objects – How to transfer between client-server?
	Slide 23: Object to JSON – Examples
	Slide 24: JSON.parse()
	Slide 25: Exercises
	Slide 26: Exercises
	Slide 27: Exercises
	Slide 28: Exercises
	Slide 29: Exercises

