
Internet Technologies
From Web Applications
to Mobile Applications

Web Apps: Mobile-first Design is essential

• Nearly 84% of the global population owns a smartphone and often
multiple types of mobile devices. That’s far more than the number of
people with access to PCs and laptop.

• Web apps can be optimized for a good mobile (phone/tablet) experience
oResponsive design: CSS media queries

oReduced loading time: light and compact coding files (minified CSS/JS files),
compressed images

• Web apps written in HTML/CSS aren't mobile applications; they run in a
browser ➔ BUT they can be packaged in a browser-like shell or wrapper,
transformed into mobile apps and provided via app stores

Mobile Applications

• Native apps: Software programs built for use on a particular mobile
platform (Android, iOS), taking advantage of each platform’s resources
(e.g. GPS, Bluetooth, Camera). Installed via App stores.
oAndroid native apps built using: Java, Kotlin

o iOS native apps built using: Objective-C, Swift

• Web apps: Software developed using HTML, CSS, JavaScript, hosted on
web servers, accessed via web browsers over a network. Not installed on
mobile phones.

• Hybrid apps: Combination of native and web apps. Developed using web
technologies (HTML, CSS, JavaScript) but packaged and installed like native
apps. Hybrid apps have access to underlying platform APIs to use device
resources. Installed via App stores.

Apache Cordova

• Open-source mobile development framework for developing hybrid
cross-platform applications using HTML, CSS and JavaScript that can
be packaged and installed like native apps

• Cordova takes a web application and renders it within a native
WebView component
oA WebView is an application component that is used to display web content

o You can think of a WebView as a web browser without any of the standard
user interface elements, such as a URL field or status bar

Apache Cordova

• Typically, web-based applications are executed within a browser without
direct access to various hardware and software features on the device
o Example: a web app running within a browser does not have access to the contact

database (names, phone numbers, emails), GPS module etc. of the mobile device

• Cordova provides (a) the basic framework to run a web app within a native
application container (WebView) as well as (b) JavaScript APIs to allow
access to a wide variety of device features, like the contacts database, etc.

• These capabilities are exposed through the use of a collection of plugins
oPlugins provide a bridge between a web application running within a WebView and

the device’s native features

Cordova Architecture

Apache Cordova is used by:

• mobile developers eager to develop applications across more than
one platform (Android, iOS), without having to re-implement it with
each platform's language and tool set

• web developers that want to deploy existing web apps in various app
store portals

• mobile developers interested in mixing native application
components with a WebView that can access device-level APIs, or
interested to develop plugin interfaces between native and WebView
components

Development path

• Cordova provides you two basic workflows to create a mobile app:

oCross-platform (command-line interface - CLI) workflow (recommended)
➢Preferable when building an app to run on as many different mobile operating systems as

possible, with little need for platform-specific development

oPlatform-centered workflow
➢ Preferable when building an app for a single platform and need to be able to modify it at

a lower level (modify the project within the SDK)

System Requirements*

• Install Java Development Kit (JDK) >= JDK11
o set the JAVA_HOME environment variable to the location of your JDK installation

• Install Gradle (binary-only version)
o add the path to the Gradle's binary directory to your path environment variable

• Install Android Studio & add SDK packages
o set the ANDROID_SDK_ROOT environment variable to the location of the Android

SDK installation

Please refer to: https://cordova.apache.org/docs/en/latest/guide/platforms/android/#system-
requirements

(*) for Android application development on a Windows machine. For macOS and Linux see here

https://www.oracle.com/java/technologies/downloads/
https://gradle.org/releases/
https://developer.android.com/studio
https://cordova.apache.org/docs/en/latest/guide/platforms/android/#system-requirements
https://cordova.apache.org/docs/en/latest/guide/platforms/android/#system-requirements
https://cordova.apache.org/docs/en/latest/guide/platforms/android/#macos-and-linux

Cross-platform workflow using Cordova CLI

• Download and install Node.js (if not already installed). On installation
you should be able to invoke node and npm on your command line
(CMD on Windows, terminal on macOS and Linux).

• Install the cordova module using npm utility of Node.js. The cordova
module will automatically be downloaded by the npm utility.
oOn macOS and Linux terminal: sudo npm install -g cordova

oOn Windows CMD: npm install -g cordova

➢The -g flag above tells npm to install cordova globally. Otherwise it will be installed in the
node_modules subdirectory of the current working directory

• Following installation, you should be able to run cordova on the
command line with no arguments and it should print help text.

https://nodejs.org/en/download/

If you get the message “'cordova' is not recognized as an internal or external command, operable program or batch file.”
see here.

Create Cordova App

• Go to the directory where you want to maintain your source code, and
create a Cordova project:

cordova create myapp cy.ac.ucy.cs.epl425 MyAndroidApp

• This creates the required directory structure for your cordova app within
myapp/. The name of the app (in mobile device) will be MyAndroidApp.
By default, the cordova create script generates a skeletal web-based
application whose root folder is myapp/www/
o The web-based application folder structure:

➢myapp/www/index.html

➢myapp/www/css/index.css

➢myapp/www/js/index.js

➢myapp/www/img/logo.jpg

Default web app
index.html file

Convert existing Web App to Mobile App:
Convert your HW1 to Android App

• Remove everything from myapp/www

• Place all files (except .php) of your HW1 within myapp/www

o Last 5 requests functionality can be served by the php file running on your
departmental account

➢Edit your JavaScript file to use absolute (full) URL to your php file(s) such as
https://www.cs.ucy.ac.cy/~<username>/epl425/<yourfilename>.php

• Optimizations:
o keep content locally on mobile device: you can avoid links to CDN-based CSS/JS

files for faster application loading time and less data exchange over the network
➢You can download Bootstrap CSS/JS files locally and replace links in the <head> section of the

index.html

Add Platforms to your Cordova App

• All subsequent commands need to be run within the project's directory
ocd myapp

• Add the platforms that you want to target your app. We will add the
'android' and 'browser'* platform and ensure they get saved to config.xml
and package.json:
ocordova platform add android

ocordova platform add browser

• To check your current set of platforms:
ocordova platform ls

Running commands to add/remove platforms
affects the contents of the project's platforms
directory, where each specified platform
appears as a subdirectory.
Note: When using the CLI to build your
application, you should not edit any files in the
/platforms/ directory. The files in this directory
are routinely overwritten when preparing
applications for building, or when plugins are
re-installed.

(*) Adding Cordova’s browser platform to a hybrid app allows us to run and debug apps using the regular web
browser without deployment to a device or server. However, if the plugins we’re using don’t support the browser
platform, then they won’t be available at runtime and we would have to code around that in our app logic.

Check prerequisites

• To build and run apps, you need to install SDKs for each platform you
wish to target. Alternatively, if you are using browser for development
you can use browser platform which does not require any platform
SDKs.

• To check if you satisfy requirements for building the platform:
ocordova requirements

• Note: make sure Gradle version is compatible with JDK version
o In this lab we used Gradle 8.1 and JDK 15 to build / run the Cordova App

Build the App

• This step builds the app for a specified platform so we can run it on
mobile device or emulator

• Run the following command to build the project for all platforms:
ocordova build

• You can optionally limit the scope of each build to specific platforms -
'android' in this case:
ocordova build android

➢This process creates the .apk file in
myapp\platforms\android\app\build\outputs\apk\debug\app-debug.apk

➢Copy .apk file to your Android device, double click to install and test

Run the App on a real device

• If you want to use a real device for testing, connect your mobile
device to your development machine via USB cable, enable USB
debugging on your Android device(*) and execute the command:
ocordova run android --device

➢ If you get errors related to missing “Android build tools”, you will need to install them via
Android Studio (see here).

➢ If you get an error message like "No devices found" then make sure that you
have developer mode and USB Debugging enabled properly on the device

o This process, builds the app, transfers .apk to mobile device, installs it and
launches it

(*)
• Enable Developer options (if System → Developer Options does not appear within Settings) - FIRST TIME ONLY
• Enable USB debugging on your device

https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/debug/dev-options

Create application icon

• Icons help your users identify your app

• Create custom icons for your app using Image Asset Studio (Android
Studio) and Xcode (iOS)

• Third-party services are also available, such as IconKitchen (Android,
iOS), Icon Themer (iOS), etc.

• Example:
oCreate icon using IconKitchen, download .zip file, extract it, and place android

folder next to myapp/www/ folder

oConfigure application to use the icon (see next slide)

https://developer.android.com/studio/write/create-app-icons#about
https://apps.apple.com/us/app/icon-themer-custom-app-icons/id1537773042
https://icon.kitchen/
https://apps.apple.com/us/app/icon-themer-custom-app-icons/id1537773042

Modify Mobile App Configuration

• config.xml (application version, application name, application icon, etc.)

• Re-run application to see changes:

<?xml version='1.0' encoding='utf-8'?>
<widget id="cy.ac.ucy.cs.epl425" version="1.0.0" android-versionCode="1" xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0">
 <name>Tourist Destination</name>
 <description>Apache Cordova for Tourist Destination</description>
 <author email="antoniou.pavlos@ucy.ac.cy" href="https://www.cs.ucy.ac.cy/~csp5pa1">
 Pavlos Antoniou
 </author>
 <content src="index.html" />
 <allow-intent href="http://*/*" />
 <allow-intent href="https://*/*" />

 <platform name="android">
 <resource-file src="android/res/mipmap-anydpi-v26/ic_launcher.xml" target="/app/src/main/android/res/mipmap-anydpi-v26/ic_launcher.xml" />
 <icon background="android/res/mipmap-mdpi/ic_launcher_background.png" density="mdpi" foreground=" android/ res/mipmap-mdpi/ic_launcher_foreground.png" />
 <icon background="android/res/mipmap-hdpi/ic_launcher_background.png" density="hdpi" foreground=" android/ res/mipmap-hdpi/ic_launcher_foreground.png" />
 <icon background="android/res/mipmap-xhdpi/ic_launcher_background.png" density="xhdpi" foreground=" android/ res/mipmap-xhdpi/ic_launcher_foreground.png" />
 <icon background="android/res/mipmap-xxhdpi/ic_launcher_background.png" density="xxhdpi" foreground=" android/ res/mipmap-xxhdpi/ic_launcher_foreground.png" />
 <icon background="android/res/mipmap-xxxhdpi/ic_launcher_background.png" density="xxxhdpi" foreground=" android/ res/mipmap-xxxhdpi/ic_launcher_foreground.png" />

 </platform>
</widget>

APPLICATION NAME

APPLICATION ICON

APPLICATION VERSION
(needed by Google Playstore)

cordova run android --device

Publish Cordova App to App Store

• Publish your app for the first time in Google Playstore (see here for info)
1. Set version number (in config.xml)

2. Generate upload key and keystore

3. Generate (build) apk in release mode

4. Sign your app

• Update your App
1. Increase version number (in config.xml)

2. Generate (build) apk in release mode

3. Sign your apk with the old upload key

These actions can be performed in Android Studio
(see here and Appendix)

https://cordova.apache.org/docs/en/latest/guide/platforms/android/#signing-an-app
https://developer.android.com/studio/publish/app-signing#sign-apk

Ionic Framework

• Ionic Framework is an open-source mobile UI toolkit
for building modern, high quality cross-platform
mobile apps with popular front-end JavaScript
frameworks (Angular, React, Vue) or without a
JavaScript framework
oNo need to have a web app to convert to mobile app

• Provides mobile-based UI components such as
menus, sliders, alerts, checkboxes, radio buttons,
input elements, modals, cards, datetime pickers
oNo need to use bootstrap

• Installation: npm i -g @ionic/cli

Appendix

Add NPM roaming data to your PATH

• My PC → Right Click → Properties → Advance System Settings →
Environment Variables button

• Click on Path and then edit

• Click New and enter
c:\users\YourUserName\AppData\Roaming\npm\
o (replace admin with the name of your user profile)

Install Android Build Tools

• Launch Android Studio

• From the home page, under More
Actions, select SDK Manager

Install Android Build Tools

• Click on the “Show
Package Details” on the
bottom left side

• In the SDK Tools tab,
open the dropdown
menu under Android
SDK Build, select the
required version of the
Android Tools, and then
select Apply to start
downloading

Import Cordova app to Android Studio

• Launch Android Studio

• Choose File -> New -> Import Project

• Select the Android platform directory in your project
(<your-project>/platforms/android) and Press Ok

• After that the Gradle build will begins and let it to be finish

• Once it finishes importing, you should be able to build and run the
app directly from Android Studio.

Sign your app for release to Google Play

• FIRST TIME: Generate an upload key
and keystore →
https://developer.android.com/studio/
publish/app-signing#generate-key

• Sign your app with your upload key →
https://developer.android.com/studio/
publish/app-signing#sign_release

https://developer.android.com/studio/publish/app-signing#generate-key
https://developer.android.com/studio/publish/app-signing#generate-key
https://developer.android.com/studio/publish/app-signing#sign_release
https://developer.android.com/studio/publish/app-signing#sign_release

	Slide 1: Internet Technologies
	Slide 2: Web Apps: Mobile-first Design is essential
	Slide 3: Mobile Applications
	Slide 4: Apache Cordova
	Slide 5
	Slide 6: Apache Cordova
	Slide 7: Cordova Architecture
	Slide 8: Apache Cordova is used by:
	Slide 9: Development path
	Slide 10: System Requirements*
	Slide 11: Cross-platform workflow using Cordova CLI
	Slide 12
	Slide 13: Create Cordova App
	Slide 14: Convert existing Web App to Mobile App: Convert your HW1 to Android App
	Slide 15: Add Platforms to your Cordova App
	Slide 16: Check prerequisites
	Slide 17: Build the App
	Slide 18: Run the App on a real device
	Slide 19: Create application icon
	Slide 20: Modify Mobile App Configuration
	Slide 21: Publish Cordova App to App Store
	Slide 22: Ionic Framework
	Slide 23: Appendix
	Slide 24: Add NPM roaming data to your PATH
	Slide 25: Install Android Build Tools
	Slide 26: Install Android Build Tools
	Slide 27: Import Cordova app to Android Studio
	Slide 28: Sign your app for release to Google Play

