
University of Cyprus

Department of

Computer Science

EPL448: Data Mining

on the Web – Lab 3

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Python

• Open source, general-purpose language

• Object Oriented, Procedural, Functional

• Easy to interface with C/ObjC/Java/Fortran

• Easy-ish to interface with C++ (via SWIG)

• Great interactive environment (python idle)

• Official Website: http://www.python.org

– Documentation: http://www.python.org/doc/

– Free book: Dive into Python

• Download powerful enterprise-ready open data-science

platform: Anaconda https://www.anaconda.com/

• OR use Google Collab: https://colab.research.google.com/

http://www.python.org/
http://www.python.org/doc/
https://linux.die.net/diveintopython/html/toc/index.html
https://www.anaconda.com/
https://colab.research.google.com/

Install Anaconda (Individual Edition) on Windows

• Go to https://www.anaconda.com/products/individual#Downloads

• Download 64-bit or 32-bit installer depending on your machine

architecture

• Double-click the .exe file to install Anaconda and follow the

instructions on the screen

https://www.anaconda.com/products/individual#Downloads

Python development

• Python Spyder IDE

• Jupyter Notebook or Jupyter Lab

– open-source web application that

enables users to create and share

documents that combine live code

with narrative text, mathematical

equations, visualizations, interactive

controls, and other rich output.

• Google Collab Notebook: https://colab.research.google.com/

https://colab.research.google.com/

Option 1: Jupyter Notebook

• Open Jupyter Notebook

• Create new Python 3 Notebook

Option 2: Jupyter Lab

• Open Anaconda Prompt

• Type jupyter lab

• Open Python 3 Notebook

Option 3: Google Collab

Option 3: Google Collab Notebook

A Code Sample

x = 34 - 23 # A comment.

y = "Hello" # Another one.

z = 3.45

if z == 3.45 or y == "Hello": # colon needed

x = x + 1 # similar to x += 1.

y = y + " World" # String concatenation.

print(x) # 12

print(y) # Hello World

x = y

print(x) # Hello World

Enough to Understand the Code

• Assignment uses = and comparison uses ==

• For numbers + - * / % are as expected

– Special use of + for string concatenation

– Special use of % for string formatting (as with printf in C)

• print("%d + %d = %d" %(x,y,x+y))

• Logical operators are words (and, or, not) not symbols

• The basic printing command is print()

• The first assignment to a variable creates it

– Variable types don’t need to be declared

– Python figures out the variable types on its own

Multiple ways of printing
a = 10

b = 20

c = a + b

Normal string concatenation, space is automatically printed

in the position of each comma

print("sum of", a , "and" , b , "is" , c)

convert variables into str

print("sum of " + str(a) + " and " + str(b) + " is " + str(c))

if you want to print in tuple way (C-like way)

print("sum of %d and %d is %d" %(a,b,c))

New style string formatting

print("sum of {0} and {1} is {2}".format(a,b,c))

Numeric Datatypes

• Integer numbers (int)

– z1 = 23

– z2 = 5 // 2 # Answer is 2, integer division.

– z3 = int(6.7) # Converts 6.7 to integer. Answer is 6.

– Booleans (bool) are a subtype of integers

• Floating (float) point numbers (implemented using double in C)

– x1 = 3.456

– x2 = 5 / 2 # Answer is 2.5

• Complex numbers

• Additional numeric types: fractions, decimal

• See more here

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Newlines and Whitespaces

• Use a newline to end a line of code.

– Use \ when must go to next line prematurely.

• Whitespace is meaningful in Python: especially indentation

• No braces { } to mark blocks of code in Python…

Use consistent indentation – whitespace(s) or tab(s) – instead.

– The first line with more indentation starts a nested block

– The first line with less indentation is outside of the block

– Indentation levels must be equal within the same block

• Often a colon appears at the start of a new block.

– e.g. in the beginning of if, else, for, while, as well as function and class

definitions

if x%2 == 0:

print("even")

print("number")

else:

print("odd")

Comments

• Single line comments: Start comments with # – the rest of line is

ignored by the python interpreter

• Multiple line comments: Start/end comments with """

• Can include a “documentation string” as the first line of any new

function or class that you define.

• The development environment, debugger, and other tools use it: it’s

good style to include one.

def my_function(x, y):

"""This is the docstring. This

function does blah blah blah."""

The code would go here...

Naming Rules

• Names are case sensitive and cannot start with a number. They can

contain letters, numbers, and underscores.

bob Bob _bob _2_bob_ bob_2 BoB

• There are some reserved words:

and, assert, break, class, continue, def, del,

elif, else, except, exec, finally, for, from,

global, if, import, in, is, lambda, not, or,

pass, print, raise, return, try, while

Some Python datatypes (objects)

• Some immutable objects

– int

– float

– decimal

– complex

– bool

– string

– tuple

– bytes

– range

– frozenset

• Some mutable objects

– list

– bytearray

– set

– dict

– user-defined classes (unless

specifically made immutable)

❖ When we change these data, this is done in place.

❖ They are not copied into a new memory address each time.

Immutable Sequences I

• Strings

– Defined using double quotes "" or single quotes ''

>>> st = "abc"

>>> st = 'abc' (Same thing.)

– Can occur within the string.
>>> st = "matt's"

– Use triple double-quotes for multi-line strings or strings than contain both ‘

and “ inside of them:
>>> st = """This is a multi-line

string that uses triple quotes."""

>>> st = """a'b"c"""

Immutable Sequences IΙ

• Tuples (Πλειάδες)

– A simple immutable ordered sequence of items of mixed types

– Defined using parentheses (and commas) or using tuple().

>>> t = tuple() # create empty tuple

>>> tu = (23, 'abc', 4.56, (2,3), 'def') # another tuple

>>> tu[2] = 3.14

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

– You can’t change a tuple.

– You can make a fresh tuple and assign its reference to a previously used

name.

>>> tu = (23, 'abc', 3.14, (2,3), 'def')

Immutable Sequences IΙI : data access

• We can access individual members of a tuple or string using

square bracket “array” notation.

• Positive index: count from the left, starting with 0.

• Negative index: count from right, starting with –1.

>>> tu = (23, 'abc', 4.56, (2,3), 'def')

>>> tu[1] # Second item in the tuple.

'abc'

>>> tu[-3]

4.56

>>> st = "Hello World"

>>> st[1] # Second character in string.

'e'

• Lists

– Mutable ordered sequence of items of mixed types

– Defined using square brackets (and commas) or using list().

>>> li = ["abc", 34, 4.34, 23]

– We can access individual members of a list using square bracket “array”

notation as in tuples and strings.

>>> li[1] # Second item in the list.

34

– We can change lists in place.

• Name li still points to the same memory reference when we’re done.

• The mutability of lists means that they aren’t as fast as tuples.

>>> li[1] = 45

>>> li

['abc', 45, 4.34, 23]

Mutable Sequences I

Tuples vs. Lists

• Lists slower but more powerful than tuples.

– Lists can be modified, and they have lots of handy operations we can

perform on them.

– Tuples are immutable and have fewer features.

• To convert between tuples and lists use the list() and tuple()

functions:

li = list(tu)

tu = tuple(li)

Slicing in Sequences: Return Copy of a Subset 1

>>> tu = (23, 'abc', 4.56, (2,3), 'def')

• Return a copy of the container with a subset of the original

members. Start copying at the first index, and stop copying before

the second index.

>>> tu[1:4]

('abc', 4.56, (2,3))

• You can also use negative indices when slicing.

>>> tu[1:-1]

('abc', 4.56, (2,3))

Slicing in Sequences: Return Copy of a Subset 2

>>> tu = (23, 'abc', 4.56, (2,3), 'def')

• Omit the first index to make a copy starting from the beginning of

the container.

>>> tu[:2]

(23, 'abc')

• Omit the second index to make a copy starting at the first index and

going to the end of the container.

>>> tu[2:]

(4.56, (2,3), 'def')

Copying the Whole Sequence

• To make a copy of an entire sequence, you can use [:].

>>> tu[:]

(23, 'abc', 4.56, (2,3), 'def')

• Note the difference between these two lines for mutable sequences:

>>> list2 = list1 # 2 names refer to 1 reference

Changing one affects both

>>> list2 = list1[:] # Two independent copies, two refs

>>> list2 = list(list1)# Two independent copies, two refs

The ‘in’ Operator
• Boolean test whether a value is inside a container:

>>> li = [1, 2, 4, 5]

>>> 3 in li

False

>>> 4 in li

True

>>> 4 not in li

False

• For strings, tests for substrings
>>> a = 'abcde'

>>> 'c' in a

True

>>> 'cd' in a

True

>>> 'ac' in a

False

• Be careful: the in keyword is also used in the syntax of for loops
and list comprehensions.

The + Operator

• The + operator produces a new string, tuple, or list whose value is

the concatenation of its arguments.

>>> "Hello" + " " + "World"

'Hello World'

>>> (1, 2, 3) + (4, 5, 6)

(1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

The * Operator

• The * operator produces a new string, tuple, or list that “repeats”

the original content.

>>> (1, 2, 3) * 3

(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> "Hello" * 3

'HelloHelloHello'

Operations on Lists Only 1

>>> li = [1, 11, 3, 4, 5]

>>> li.append('a') # Our first exposure to method syntax

>>> li

[1, 11, 3, 4, 5, 'a']

>>> li.insert(2, 'i')

>>> li

[1, 11, 'i', 3, 4, 5, 'a']

Operations on Lists Only 2

• extend operates on list li in place.

>>> li.extend([9, 8, 7])

>>> li

[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7]

• Confusing:

– Extend takes a list as an argument.

– Append takes a singleton as an argument.

>>> li.append([10, 11, 12])

>>> li

[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7, [10, 11, 12]]

Operations on Lists Only 3

>>> li = ['a', 'b', 'c', 'b']

>>> li.index('b') # index of first occurrence

1

>>> li.count('b') # number of occurrences

2

>>> li.remove('b') # remove first occurrence

>>> li

['a', 'c', 'b']

Operations on Lists Only 4

>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*

>>> li

[8, 6, 2, 5]

>>> li.sort() # sort the list *in place*

>>> li

[2, 5, 6, 8]

>>> li.sort(some_function) # sort in place using user-

defined comparison

Sets: A set type
• Sets store unordered, finite sets of unique, immutable objects

– Sets are mutable, cannot be indexed.

– Defined using { } (and commas) or set()

– Common uses:

• fast membership testing

• removing duplicates from a sequence

• computing mathematical operations such as intersection, union

>>> se1 = set() # create an empty set

>>> se2 = {"arrow", 1, 5.6} # create another set

>>> se2.add("hello")

>>> print(se2)

{1, 'hello', 5.6, 'arrow'}

>>> se2.remove("hello")

>>> print(se2)

{1, 5.6, 'arrow'}

Dictionaries: A Mapping type

• Dictionaries store a mapping between a set of keys and a set of

values.

– Dictionaries are mutable

– Keys can be any immutable type.

– Values can be any type

– A single dictionary can store values of different types

– Defined using { } : (and commas).

• You can define, modify, view, lookup, and delete the key-value pairs

in the dictionary.

Using dictionaries

d = {'user': 'john', 'pswd': 1234}

print(d['user']) # john

print(d['pswd')) # 1234

print(d['john']) # KeyError: 'john'

d['user']='bill' # modify user value

print(d) # {'user': 'bill', 'pswd': 1234}

d['id']=45 # add another key

print(d) # {'user': 'bill', 'pswd': 1234, 'id': 45}

del d['user'] # remove one key/value pair

print(d) # {'pswd': 1234, 'id': 45}

d.clear() to remove all key/value pairs

print(d.keys()) # dict_keys(['pswd', 'id'])

print(d.values()) # dict_values([1234, 45])

Control of flow 1

• The if/elif/else statement

if x == 3:

print("x equals 3.")

elif x == 2:

print("x equals 2.")

else:

print("x equals something else.")

print("This is outside the if statement.")

Control of flow 2

• The while statement

x = 0

while x < 5:

print(x)

x = x + 1

print("Outside of the loop.")

Output:

0

1

2

3

4

Outside of the loop.

Control of flow 3

• The for statement

the same as

for i in range(5): # for i in [0,1,2,3,4]:

print(i)

print("Outside of the loop.") Output:

0

1

2

3

4

Outside of the loop.

range()

• The range() function has two sets of parameters, as follows:

– range(stop)

• stop: Number of integers (whole numbers) to generate, starting from zero.

E.g. range(3) == [0, 1, 2].

– range([start], stop[, step])

• start: Starting number of the sequence.

• stop: Generate numbers up to, but not including this number.

• step: Difference between each number in the sequence.

• Note that:

– All parameters must be integers.

– All parameters can be positive or negative.

Control of flow 4

• The for statement

for i in [3, 6, 9]:

print(i)

for c in "Hello":

print(c)

Output:

3

6

9

Output:

H

e

l

l

o

List comprehension

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

newlist = []

for x in fruits:

if "a" in x:

newlist.append(x)

print(newlist)

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

newlist = [x for x in fruits if "a" in x]

print(newlist)

With list comprehension you can do all that with only one line of code:

List comprehension offers a shorter syntax when you want to create

a new list based on the values of an existing list.

User-defined functions

• def creates a function and assigns it a name

• return sends a result back to the caller

• Arguments are passed by assignment

• Arguments and return types are not declared

def <name>(arg1, arg2, ..., argN):

<statements>

return <values>

def times(x,y):

return x*y
Function call:
x = times(4,5) # returns 20

Passing Arguments to Functions

• Arguments are passed by assignment

• Passed arguments are assigned to local names

• There is no call-by-reference per se since:

– changes to immutable objects within a function only change what object the

name points to (and do not affect the caller, unless it's a global variable)

⚫ For immutable objects (e.g., integers, strings, tuples), Python acts
like C's pass by value

⚫ For mutable objects (e.g., lists), Python acts like C's pass by
pointer; in-place changes to mutable objects can affect the caller

Example.py
def f1(x,y):

x = x + 1

y = y * 2

print(x, y) # 1 [1, 2, 1, 2]

def f2(x,y):

x = x + 1

y[0] = y[0] * 2

print(x, y) # 1 [2, 2]

a = 0 # immutable

b = [1,2] # mutable

f1(a,b)

print(a, b) # 0 [1, 2]

f2(a,b)

print(a, b) # 0 [2, 2]

Optional Arguments

• Can define defaults for arguments that need not be passed

def func(a, b, c=10, d=100):

print(a,b,c,d)

>>> func(1,2)

1 2 10 100

>>> func(1,2,3,4)

1 2 3 4

Important notes

• All functions in Python have a return value

– even if no return line inside the code.

• Functions without a return, return the special value None.

• There is no function overloading in Python.

– Two different functions can’t have the same name, even if they have

different arguments.

• Functions can be used as any other data type. They can be:

– Arguments to function

– Return values of functions

– Assigned to variables

– Parts of tuples, lists, etc

Built-in functions

• https://docs.python.org/3/library/functions.html

len() :

• Return the length (the

number of items) of an

object. The argument may

be a sequence (such as a

string, bytes, tuple, list, or

range) or a collection

(such as a dictionary, set,

or frozen set).

min() / max() :

• Return the smallest /

largest item in an iterable

or the smallest of two or

more arguments.

https://docs.python.org/3/library/functions.html

Built-in functions: len(), max(), min()
>>> my_list = ['one', 'two', 3]

>>> my_list_len = len(my_list)

>>> for i in range(0, my_list_len):

... print(my_list[i])

...

one

two

3

>>> max("hello","world")

'world'

>>> max(3,13)

13

>>> min([11,5,19,66])

5

Modules

• Modules are functions and variables defined in separate files

• Items are imported using from or import

from module import function

function()

import module

module.function()
Β’ Τρόπος

Α’ Τρόπος

Mathematical functions

• https://docs.python.org/3.9/library/math.html

>>> import math

>>> print(math.sqrt(3))

1.7320508075688772

>>> from math import sqrt

>>> print(sqrt(3))

1.7320508075688772

https://docs.python.org/3.9/library/math.html

Lambda function

⚫ Shorthand version of def statement; Useful for “inlining” functions

⚫ A lambda function can take any number of arguments, but can only
have one expression (e.g., no if statements, etc)

⚫ A lambda returns a function; the programmer can decide whether
or not to assign this function to a name

• Simple example:
>>> def sum(x,y): return x+y

>>> sum(1,2)

3

>>> sum2 = lambda x, y: x+y

>>> sum2(1,2)

3

Built-in functions: map()

⚫ map(func, seq) calls a given function on every element of a

sequence and returns an iterator (not a list as in Python 2)

⚫ map.py:
def double(x):

return x*2

a = [1, 2, 3]

print(map(double, a)) # <map object at 0x000001B0512EDD30>

print(list(map(double, a))) # [2, 4, 6]

⚫ Alternatively (without def):

a = [1, 2, 3]

print(list(map((lambda x: x*2), a))) # [2, 4, 6]

Built-in functions: map()

• map() can be applied to more than one sequence

• sequences have to have the same length

• map() will apply its lambda function to the elements of the argument

sequences, i.e. it first applies to the elements with the 0th index, then

to the elements with the 1st index until the n-th index is reached:
>>> a = [1,2,3,4]

>>> b = [17,12,11,10]

>>> c = [-1,-4,5,9]

>>> list(map(lambda x,y:x+y, a,b))

[18, 14, 14, 14]

>>> list(map(lambda x,y,z:x+y+z, a,b,c))

[17, 10, 19, 23]

>>> list(map(lambda x,y,z : 2.5*x + 2*y - z, a,b,c))

[37.5, 33.0, 24.5, 21.0]

Built-in functions: filter()

⚫ filter(func, seq) filters out all the elements of a sequence for which
the function returns True

⚫ Function has to return a Boolean value

⚫ Example: filter out first the odd and then the even elements of the
sequence of the first 11 Fibonacci numbers:
>>> fibonacci = [0,1,1,2,3,5,8,13,21,34,55]

>>> odd_numbers = list(filter(lambda x: x % 2, fibonacci))

>>> print(odd_numbers)

[1, 1, 3, 5, 13, 21, 55]

>>> even_numbers = list(filter(lambda x: x % 2 == 0,

fibonacci))

>>> print(even_numbers)

[0, 2, 8, 34]

Useful python libraries for data science

• Pandas

– high-performance, easy-to-use data structures and data analysis tools

– allows for fast analysis and data cleaning and preparation

– suited for many different kinds of data: tabular data, time-series data,

arbitrary matrix data with row and column labels, and any other form of

observational/statistical data sets

• Matplotlib, Seaborn

– comprehensive library for creating static, animated, and interactive

visualizations

