
University of Cyprus

Department of

Computer Science

EPL448: Data Mining

on the Web – Lab 6

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Prepare data for machine learning

• Data preparation is the process of gathering, combining, structuring and

organizing data so it can be used in Exploratory Data Analysis (statistical

analysis and visualization) and Predictive Modelling

– Gather/combine data: Finding the right data. This can come from databases, files (.csv,

.json), APIs, social media, statistical services

• We can combine data (e.g. use features from multiple sources) to provide more information to the

predictive modelling technique, helping it make better predictions

– Preprocess data: Organize your selected data by formatting, cleaning, encoding and

resampling.

• Cleaning data is the fixing/deleting/filling in missing data

• Encoding is the conversion of labeled/categorical text-based data into numerical data

• Resampling is about changing the frequency of observations (in time-depended data)

– Transform data: Transform preprocessed data by engineering features using scaling,

unskewing, feature selection and feature extraction (next lab) for achieving better

performance of predictive modelling methods

• Scaling is the process of rescaling or standardizing or normalizing features

• Unskewing is making features’ distribution symmetrical

Cleaning data

• Fixing up formats

– Often when data is coming from various international sources may (a) involve

mixed formats, and/or (b) not follow the expected numeric syntax

• decimal separator is dot (need to be replaced if comma)

• there is no thousands separator (need to be removed if any)

• monetary symbols before or after numbers (need to be removed if any)

– Data may not follow the default (expected by Python plots or functions)

formats

• e.g. dates as integers 20090609231247 instead of the expected format 2009-06-09

23:12:47 (ISO 8601 format) need to be transformed

Cleaning data

• Deleting missing values

– may delete rows if the number of these rows is relatively small compared to

the dataset

• e.g. do not account for more than 10% of all lines

– may delete rows if rows to be deleted are not important

• e.g. do not contain info about a specific category in dataset

– missing ages in some rows may correspond to older and more privacy or conscious users and

are important in the decision-making process, so cannot be removed

– This is not an easy task, especially if we are not familiar with the dataset

– action can be performed with Pandas dropna(), see next slides

Cleaning data

• Filling in missing values usually on a column-by-column basis

– For categorical data (e.g. device type, countries) makes sense to create a new

category ‘unknown’

– For numerical values (e.g. age) makes sense to use:

• Statistical aggregations such as mean or median of either (a) the rest values of the column

or (b) take into account values belonging to the same category of that of the missing value

• Interpolation: applied on time-series data, see slides about sampling

– Build a predictors to predict a missing value

• Correcting erroneous values

– In a dataset, some values can be identified (using statistical analysis or

visually e.g. see distribution or box plots) as obviously incorrect

• E.g. find a number in a gender column, an age column with values below 0 or well over 100

– Can be deleted and then treated as missing values

Cleaning data

• Handling outliers (=values that differ significantly from other observations)

– Important step in data preprocessing, as outliers can distort your model's

performance (e.g. in regression and distance-based algorithms like k-NN)

– Decision to remove outliers should be made carefully, as sometimes outliers

can represent important variability in the data

– Outlier removal techniques can be found in Appendix

• Standardizing categories

– When data collected directly from users, especially from text fields → spelling

mistakes, language differences → a given answer may be provided in multiple

ways

• E.g. country: USA, United States, U.S

• E.g. dates: 1982-10-01, 1/10/1982

– Goal: standardize values to ensure that there is only one version of each value

Missing values manipulation

• Missing values are marked as NaN
In []: # Read a dataset with missing values (download zipped dataset from here)

nfl_data = pd.read_csv('NFL Play by Play 2009-2016 (v3).csv', dtype='unicode')

nfl_data.head()

Out[]: Date GameID ... yacWPA Season

0 2009-09-10 2009091000 ... NaN 2009

1 2009-09-10 2009091000 ... 0.03689896441538476 2009

2 2009-09-10 2009091000 ... NaN 2009

3 2009-09-10 2009091000 ... -0.1562385319864913 2009

4 2009-09-10 2009091000 ... NaN 2009

In []: nfl_data.isnull().head()

Out[]: Date GameID Drive qtr down ... Win_Prob WPA airWPA yacWPA Season

0 False False False False True ... False False True True False

1 False False False False False ... False False False False False

2 False False False False False ... False False True True False

3 False False False False False ... False False False False False

4 False False False False False ... False False True True False

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB06/NFL%20Play%20by%20Play%202009-2016%20(v3).zip

Missing values manipulation

• Methods to deal with missing values in the data frame:

df.method() description

dropna() Drop observations (rows) with at least one missing value

dropna(axis=1) Drop the columns where at least one value is missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with a specified value

ffill() Replace missing values by propagating the last valid observation to next valid

bfill() Replace missing values by using the next valid observation to fill the gap

isnull() returns True if the value is missing

notnull() Returns True for non-missing values

Missing values manipulation

9

In []: # get the number of missing data points per column; sum True values

missing_values_count = nfl_data.isnull().sum()

look at the # of missing points in the first ten columns

missing_values_count[0:10]

Out[]: Date 0

GameID 0

Drive 0

qtr 0

down 54218

time 188

TimeUnder 0

TimeSecs 188

PlayTimeDiff 374

SideofField 450

dtype: int64

• Evaluate the number of missing values per column:

• The more missing values a feature (column) has, the less reliable

the data in that column might be → feature is less important

• Knowing how many missing values exist helps assess whether to

keep, impute, or drop those columns
• If a column or row has too many missing values, you might consider

dropping it from the analysis, as it could contribute little to the

model's accuracy

Drop rows with missing values
In []: # remove all the rows that contain a missing value

nfl_data.dropna()

Out[]:

It looks like that's removed all our data! This is because
every row in our dataset had at least one missing value.

Drop columns with missing values
In []: # remove all columns with at least one missing value

columns_cleaned = nfl_data.dropna(axis=1)

columns_cleaned.head()

Out[]: Date GameID Drive ... ExPoint_Prob TwoPoint_Prob Season

0 2009-09-10 2009091000 1 ... 0 0 2009

1 2009-09-10 2009091000 1 ... 0 0 2009

2 2009-09-10 2009091000 1 ... 0 0 2009

3 2009-09-10 2009091000 1 ... 0 0 2009

4 2009-09-10 2009091000 1 ... 0 0 2009

[5 rows x 41 columns]

In []: # just how much data did we lose?

print("Columns in original dataset: %d" % nfl_data.shape[1])

print("Columns with na's dropped: %d" % columns_cleaned.shape[1])

Out[]: Columns in original dataset: 102

Columns with na's dropped: 41

nfl_data.dropna(axis=1, subset=["down", "SideofField"])

We can also define in which columns to look for missing values.

Fill in missing values

• One option we have is to specify what we want the NaN values to

be replaced with

• Another option is to replace missing values with the first valid value

comes after it in the same column

– This makes a lot of sense for datasets where the observations have some

sort of logical order

In []: # replace all NA's with 0

nfl_data = nfl_data.fillna(0)

replace all NA's with 0 for a specific column

nfl_data['yacWPA'] = nfl_data['yacWPA'].fillna(0)

In []: # replace all NA's the first valid value that comes after it in the

same column, then replace all the remaining na’s (if any) with 0

nfl_data = nfl_data.bfill(axis=0).fillna(0)

Fill in missing values with imputation

• Imputation fills in the missing value with some number

• Imputed value won't be exactly right in most cases, but it usually

gives more accurate models than dropping the column entirely

– SimpleImputer takes two arguments such as missing_values and strategy

• Strategy can be set to mean, median, most_frequent, constant (with fill_value argument)

– Numerical missing values: mean, median, most frequent, constant

– Categorical missing values: most frequent, constant

– fit_transform method is invoked on the instance of SimpleImputer to impute

the missing values

In []: # Using Sklearn’s simple imputer

from sklearn.impute import SimpleImputer

import numpy as np

my_imputer = SimpleImputer(missing_values=np.NaN, strategy='mean')

nfl_data[['yacWPA']] = my_imputer.fit_transform(nfl_data[['yacWPA']])

DataFrame nfl_data[['yacWPA']] accepted.

Series nfl_data['yacWPA'] not accepted

Fill in missing values with imputation

• Strategy = mean

Date GameID ... yacWPA Season

0 2009-09-10 2009091000 ... NaN 2009

1 2009-09-10 2009091000 ... 0.03689896441538476 2009

2 2009-09-10 2009091000 ... NaN 2009

3 2009-09-10 2009091000 ... -0.1562385319864913 2009

4 2009-09-10 2009091000 ... NaN 2009

Date GameID ... yacWPA Season

0 2009-09-10 2009091000 ... -0.010492 2009

1 2009-09-10 2009091000 ... 0.03689896441538476 2009

2 2009-09-10 2009091000 ... -0.010492 2009

3 2009-09-10 2009091000 ... -0.1562385319864913 2009

4 2009-09-10 2009091000 ... -0.010492 2009

nfl_data.head()

Before imputation

After imputation

Encoding categorical data

• Machine learning models require all input variables (features) to be

numerical

• Categorical text-based data must be encoded to numbers

• Popular techniques:

– Label Encoding

– Ordinal Encoding

– One-Hot Encoding (or Dummy Variable Encoding)

– Effect Encoding

– Bin counting

– Feature Hashing

• Scikit-learn lib involves a few encoders but category_encoders lib has

more with useful properties conda install -c conda-forge category_encoders

(website: http://contrib.scikit-learn.org/category_encoders)

http://contrib.scikit-learn.org/category_encoders

Label Encoding

• Assigns a unique integer value to each category in a categorical

feature

– For example, if a feature has three categories: "Red", "Green", "Blue", Label

Encoding could assign them numerical values like:

• "Red" → 0, "Green" → 1, "Blue" → 2

• We use label encoding when the categorical feature is nominal

(without inherent order)

• The numbers assigned are arbitrary and don’t carry any meaning in

terms of ranking or size

• Potential issue: implies ordinal relationships between categories

– e.g. Red (0) seems to be closer to Green (1) than to Blue (2)

– high ordinal values possess higher “weight” and may be considered of higher

importance especially in distance-based ML techniques

Ordinal Encoding

• Ordinal encoding is essentially label encoding, where each category

is a assigned a unique value. However, ordinal encoding takes into

account the order of the categories

• We use ordinal encoding when the categorical feature is ordinal

(with natural, ordered values) and retaining the order is important

• Encoding should reflect the sequence

Natural order:

'High school':1

'Diploma':2

'Bachelors':3

'Masters':4

'Phd':5

Label & Ordinal Encoding: OrdinalEncoder
import category_encoders as ce

import pandas as pd

df=pd.DataFrame(

{'Degree':['High school', 'Masters', 'Diploma',

'Bachelors', 'Bachelors', 'Masters', 'Phd', 'High

school', 'High school']})

#Original data

df

create object of Ordinal encoding

ordinal_encoder= ce.OrdinalEncoder(

mapping=[{'col':'Degree','mapping':{'None':0,'High

school':1,'Diploma':2,'Bachelors':3,'Masters':4,

'Phd':5}}])

#fit and transform data

df['Ordinal'] =

ordinal_encoder.fit_transform(df['Degree'])

df

Note: If no mapping is given, order is automatically chosen by the encoder → Label encoding

One-Hot Encoding

• We use this categorical data encoding technique when the features

are nominal (do not have any order) and we want to avoid imposing

ordinal relationships between categories (as in label encoding)

• For each label (value) of a categorical feature, we create a new

feature (column)

• Each label is mapped with a binary feature containing either 0 or 1

– 0 represents absence, and 1 represents the presence of that category value

• These newly created binary features are known as Dummy variables

• The number of dummy variables depends on the labels (categories)

present in the categorical variable

• One-hot can be used over label encoding on nominal data when

distance-based machine learning techniques will be used

One-Hot Encoding: OneHotEncoder
Create object for One-hot encoding

onehot_encoder=ce.OneHotEncoder(cols=['Degree'], use_cat_names=True)

#fit and transform data

df_onehot = onehot_encoder.fit_transform(df)

df_onehot

Dummy variables

a list of columns to encode, if None, all

string columns will be encoded

Drawbacks of One-Hot

• If there are multiple labels (categories) in a feature ➔ we need a

similar number of dummy variables to encode the data

– For example, a feature with 30 different values will require 30 new dummy

variables for coding

• If there are multiple categorical features in the dataset we will end

with a high number of binary features

• Due to the massive increase in the dataset, coding slows down the

learning of the model along with deteriorating the overall

performance that ultimately makes the model computationally

expensive.

Cyclical feature encoding

• When dealing with time-dependent data (e.g. months, days, hours) it’s

important to encode the properties of time properly

– Decompose datetime string to a set of new features: month (1-12), day of the

month (1, 2, .. 31), hour (0-23), minute (0-59), day (Sun→1, Mon→2, .. Sat→7)

• The numerical values of each column distort the notion of proximity, i.e. in the hour feature,

midnight is represented by 0 and eleven (PM) in the evening is represented by 23 => large

difference in weights

– Cyclical encoding: a better way is to represent time of day as a point on the

unit circle, using sine and cosine transformation

data['hour_sin'] = np.sin(2 * np.pi * data['hour']/23.0)

data['hour_cos'] = np.cos(2 * np.pi * data['hour']/23.0)

11 PM is close to 12

midnight in terms of

sin and cos

Data Transformation: Scaling data

• Feature rescaling

– Some classification/regression/clustering techniques (see next slide) use the

notion of distance (e.g. Euclidean) to measure similarity between 2

observations

– Example

• Classify houses with 2 features

• 𝑥1 = 𝑠𝑖𝑧𝑒 0 − 2000𝑚2

• 𝑥2 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 1 − 5

• 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋1, 𝑋2 = 523 − 127 2 + 4 − 2 2

• Distance is governed by features having boarder range of values

– When distance is used by algorithms make sure features are on a similar

scale

– Target value (to be predicted) is not necessary to be scaled

𝑋 =
523 4
127 2
25 1

Feature x1 with high

magnitudes weights a lot

more (dominates) in the

distance calculations

than feature x2 with low

magnitudes

Data Transformation: Scaling data

• Some examples of algorithms where feature scaling matters are:

– k-nearest neighbors (kNN) for classification uses Euclidean distance

– k-means for clustering uses Euclidean distance

– gradient descent/ascent-based optimization used in logistic regression,

Support Vector Machines (SVMs), neural networks etc.

• Weights for features with higher magnitudes will update much faster than others

– linear discriminant analysis (LDA), principal component analysis (PCA)

• you want to find directions of maximizing the variance (under the constraints that those

directions/eigenvectors/principal components are orthogonal)

• Decision trees and ensembles of trees are unaffected by the scale

of feature variables. Examples:

– bagging like RandomForest

– boosting like AdaBoost, Gradient Boosting, XGBoost, LightGBM, CatBoost

Data Transformation: Scaling data

• Feature rescaling

– Rescale each feature individually into a given range, e.g. [0, 1]

– Scikit-learn module: MinMaxScaler or MaxAbsScaler

• MinMaxScaler: Transforms features by scaling each feature to a given range (xmin → xmax).

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑟𝑒𝑠𝑐 =
𝑥𝑖,𝑗 − m𝑖𝑛(𝑥𝑗)

max 𝑥𝑗 − min(𝑥𝑗)
⇒ 𝑥𝑟𝑒𝑠𝑐 =

0.25
0
1

1
0

0.55

from sklearn.preprocessing import MinMaxScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

create the scaler object

scaler = MinMaxScaler(feature_range=(0, 1))

train the scaler (find min and max)

scaler.fit(df)

scale the dataset (apply the transformation)

minMaxRescaledX = scaler.transform(df)

print(minMaxRescaledX)

minMaxRescaledX =

scaler.fit_transform(df)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.htm
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

Data Transformation: Scaling data

StandardScaler

• Feature standardization

– Rescales each feature individually to make values have zero mean 𝜇 = 0

and unit variance 𝜎2 = 1

– Centers values around zero and adjusts their spread so that variance is 1

– Benefits features that are approximately normally distributed (gaussian)

– Useful for distance-based algorithms such as the SVM (RBF kernel) and
when using gradient-based optimization methods

– Scikit-learn module: StandardScaler

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑠𝑡𝑑 =
𝑥𝑖,𝑗 − m𝑒𝑎𝑛(𝑥𝑗)

𝜎
⇒ 𝑥𝑠𝑡𝑑 =

−0.39
−0.98
1.37

1.86

−1.226
0.07

from sklearn.preprocessing import StandardScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

scaler = StandardScaler()

train the standardizer (find mean, std) and standardize the dataset

standardRescaledX = scaler.fit_transform(df)

print(standardRescaledX)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Data Transformation: Scaling data

• Feature robust standardization

– When data contains outliers, mean value and variance used by the Standard

Scaler can distort the rescaled values

• MinMaxScaler is also sensitive to the presence of outliers as well

– Robust standardization is to rescale each feature individually to make

values have zero median (median=0) and unit interquartile range (IQR=1)

– Centers values around 25th and 75th percentiles (within the IQR)

– Benefits features with non-gaussian distributions, particularly those with

outliers or skewed (long-tailed) distributions

– Scikit-learn module: RobustScaler

Compare the effect of different scalers on data with outliers

from sklearn.preprocessing import RobustScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

rscaler = RobustScaler().fit(df)

train the standardizer (find median, quantiles) and standardize the dataset

robustRescaledX = rscaler.fit_transform(df)

print(robustRescaledX)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py

When to normalize or standardize features?

• ANS: When features have different scales + distance-based or
gradient-based predictive techniques are to be used

• The choice of using normalization (MinMax scaler), standardization
(Standard scaler) or robust standardization (Robust scaler) depends
on the nature (distribution) of data (features)

• Normalization is applied on features having different ranges without
outliers or with outliers which don’t significantly affect the mean if you
want to keep the values within a specific range

• Standardization is applied on features are that approximately normally
distributed and either have no outliers or have outliers but they don’t
significantly affect the mean

• Robust standardization is applied on features with significant outliers
or skewed (long-tailed) distributions

Scale or normalize label or ordinal encoded data when

using distance-based algorithms?

• Depends on the nature of your data

• When to scale:
– If an encoded feature has many levels, scaling might help normalize its

influence compared to other features

– If using ordinal encoding and values represent a meaningful quantitative scale:
• the ordinal values are evenly spaced (e.g., survey responses like “Strongly Disagree” to

“Strongly Agree” encoded as 1 to 5), min-max scaling will preserve the underlying
quantitative relationships (other scaler may not be appropriate → distort relationships)

• When not to scale:
– If the values are purely categorical with arbitrary intervals

• In ordinal encoding for example, education levels (e.g., "High School" → 1, "Bachelor's" →
2, "Master's" → 3) don’t have meaningful, fixed numerical intervals

• In label encoding which assigns arbitrary integer values to categories (e.g., "Red" = 0,
"Green" = 1, "Blue" = 2), these integers don't reflect a true order or distance

 scaling such values (getting them closer or further) can imply a relationship
 that doesn’t exist

Scale or normalize one-hot encoded data when using

distance-based algorithms?

• Scaling features being one-hot-encoded is not recommended:

– Binary values don’t require scaling

• One-hot encoding creates binary (0 or 1) columns. Scaling these values won’t add useful

information, as they already clearly indicate the presence (1) or absence (0) of a category.

– Categorical represenation is distorted

• Scaling one-hot encoded features would produce non-binary values that don’t make

intuitive sense in the context of categorical representation. For instance, a scaled value of

0.5 would have no clear interpretation between 0 and 1.

– Distance-based algorithms

• Distance-based algorithms (like KNN) can handle binary features effectively without scaling

by using a custom distance metric

When to normalize or standardize target?

• Normalization and standardization of target variable is generally not

required but can be beneficial especially in regression tasks, under

specific circumstances:

– Wide Range of Values: If the target variable has a wide range of values

(e.g., income ranging from hundreds to millions), models like linear

regression might give undue weight to large values. Thus, normalizing or

standardize the target variable can help the model avoid being biased

toward large numbers

– For algorithms like gradient descent (used in linear regression, neural

networks), scaling the target can be essential because the magnitude of the

target values can affect the convergence speed

Data Transformation: Scaling data

• Normalize observations (rows)

– Normalize each observation (row) independently of other rows so that its

norm (I1 or I2) equals 1

– Normalizing to unit norm helps ensure that each row contributes equally to

the distance metrics used in algorithms, preventing any single row from

disproportionately affecting the results.

• Useful for sparse datasets (lots of zeros) to prevent zeros from skewing data

– Commonly used in text classification or clustering

• dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and

is the base similarity metric for the Vector Space Model

– Scikit-learn module: Normalizer

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑛𝑜𝑟𝑚 =
𝑥𝑖,𝑗

σ𝑘=0
𝑛 𝑥𝑖,𝑘

2

⇒ 𝑥𝑛𝑜𝑟𝑚 =
0.29
0.83
0.66

 0.96
 0.55
 0.75

0.292 + 0.962 = 1

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html

Data Transformation: Unskewing data

• Data is skewed when its distribution curve is asymmetrical as

compared to a normal distribution curve that is perfectly symmetrical

• Skewness is the measure of the asymmetry

– The skewness for a gaussian or normal distribution is 0

Left / negative skew:

Long tail is on the left /

negative side of the

peak

Right / positive skew:

Long tail is on the right

/ positive side of the

peak

No skew

(symmetrical

distribution)

Mean

Median Median

Mean

Median

Mean

Effects of skewed data

• Skewness of (an input or target) variable may degrade the predictive

model’s ability to predict values towards the long tail side

– A regression model for predicting house sale prices or using house sale price

as input feature (using the above dataset) will be trained on a much larger

number of moderately priced houses and will be less likely to successfully

predict the price for the most expensive houses

Right skewed: there is a

minority of very large

values

Distribution of the house

sale prices from Kaggle’s

House Price Competition

Unskewing transformations

• When removing skewness, transformations are attempting to change

the shape of the distribution; to make it symmetric (Gaussian)

– If a dataset can be transformed to be statistically close enough to a Gaussian

dataset, some machine learning algorithms such as Linear Regression,

Logistic Regression, SVM (with RBF kernel), Gaussian Naïve Bayes are able

to achieve better predictive performance (see Lab 8 for more info)

– However, other machine learning models e.g. decision trees and ensembles

of trees (bagging, boosting) are not affected by skewness (see Lab 8 for more

info)

• Unskewing transformations are recommended to be applied on

highly-skewed variables (input features and target variable)

• Min-max scaler, standard scaler and robust scaler do not change the

skew (shape) of the distribution; other techniques are needed

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb
https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb

Unskewing transformations

• Square Root (SQRT) transformation

• Log(arithmic) transformation

• Boxcox & Yeo-Johnson transformations
– Box-Cox can handle both right and left skewed

distributions but can only be applied to values

that are strictly positive

– Yeo-Johnson can also handle both right and

left skewed distributions and can be applied to

both positive and negative values

import numpy as np

np.sqrt(df.column)

from scipy.stats import boxcox

df['bc_col'] = boxcox(df['col'])

from scipy.stats import yeojohnson

df['yj_col'] = yeojohnson (df['col'])

import numpy as np

np.log(df.column)

• work well on

right skewed

distributions

• applicable on features with

strictly positive values (sqrt

and log cannot be applied on

negative values)

Unskewing transformations: Examples

• Pandas .skew() method can be used to measure skewness of data

• Source code and results are available in .ipynb file in course website

• A quite descriptive document on skewness can be found here

Original SalePrice column

Skewness: 1.8828757

SQRT transformation

Skewness: 0.9431527

LOG transformation

Skewness: 0.1213351

BoxCox transformation

Skewness: -0.0086529

YeoJohnson transform

Skewness: -0.0086536

https://www.analyticsvidhya.com/blog/2020/07/what-is-skewness-statistics/

APPENDIX
Resampling will be further discussed in lab about Timeseries data

Resampling data

• Resampling involves changing the frequency of time-dependent

features (called timeseries)

• Two types of resampling are:

– Upsampling: When you increase the frequency of the samples (higher

granularity), such as from minutes to seconds

– Downsampling: When you decrease the frequency of the samples (lower

granularity), such as from minutes to hours

• Resampling may be required if:

– data is not available at the same frequency that you want to make predictions

• For example, you have a feature measured on a daily basis and you want to make

predictions on a monthly basis => you need to downsample it to a monthly level

– there is an extremely high number of observations that needs to be

diminished to speedup both EDA and ML algorithms execution time

• Need for downsampling

Resampling data – Example

• Shampoo dataset: describes the monthly number of sales of

shampoo over a 3-year period (2001 to 2003) – 36 observations

• Load dataset

from pandas import read_csv

from datetime import datetime

shampoo_df = read_csv('shampoo.csv')

print(shampoo_df.head())

convert Month feature (e.g. from 1-01 20 2001-01-01)

shampoo_df['Month'] = shampoo_df['Month'].map(lambda m: datetime.strptime('200'+m, '%Y-%m'))

dataframe must have a datetime-like index in order to use resample function

set Month feature as index

shampoo_df = shampoo_df.set_index('Month')

print(shampoo_df.head())

https://cs.ucy.ac.cy/courses/EPL448/labs/LAB05/shampoo.csv

Resampling data – Example
plt.figure(1,figsize=(15,4))

sns.lineplot(data=shampoo_df, x=shampoo_df.index, y=shampoo_df.Sales)

plt.title('Original dataset')

plt.show()

• Resample by day

Resampling data – Upsampling

forward fill

daily=shampoo_df.resample('D').ffill()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Forward filling')

plt.show()

print(daily.head())

Resampling can be performed by:

second (‘s’), minute (‘min’), hour (‘h’),

day (‘D’), week (‘W’), month end (‘ME’),

quarter end (‘QE’), year end (‘YE’)

Forward-filling imputed missing values

using the last observed value.

Resampling data – Upsampling filling strategies

.ffill([limit]) Forward fill the values.

.backfill([limit]) Backward fill the new missing values in the

resampled data.

.bfill([limit]) Backward fill the new missing values in the

resampled data.

.pad([limit]) Forward fill the values.

.nearest([limit]) Resample by using the nearest value.

.fillna(method[, limit]) Fill missing values introduced by upsampling.

.asfreq([fill_value]) Return the values at the new freq, essentially a

reindex.

.interpolate([method, axis, limit, ...]) Interpolate values according to different methods.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.ffill.html#pandas.core.resample.Resampler.ffill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.backfill.html#pandas.core.resample.Resampler.backfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.bfill.html#pandas.core.resample.Resampler.bfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.pad.html#pandas.core.resample.Resampler.pad
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.nearest.html#pandas.core.resample.Resampler.nearest
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.fillna.html#pandas.core.resample.Resampler.fillna
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.asfreq.html#pandas.core.resample.Resampler.asfreq
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.interpolate.html#pandas.core.resample.Resampler.interpolate

• Resample by day, filling by interpolation

Resampling data – Upsampling

linear interpolation
daily=shampoo_df.resample('D').interpolate(method='linear')

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Linear interpolation')

plt.show()

spline interpolation
daily=shampoo_df.resample('D').interpolate(method='spline', order=2)

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Spline interpolation (order=2)')

plt.show()

Resampling data – Downsampling

• Resample by quarter, aggregate by sum and mean

sum aggregation
quarterly=shampoo_df.resample('QE').sum()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index,

y=quarterly.Sales)

plt.title('Quarterly (sum)')

plt.show()

mean aggregation
quarterly=shampoo_df.resample('QE').mean()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index, y=quarterly.Sales)

plt.title('Quarterly (mean)')

plt.show()

Resampling data – Downsampling aggregation strategies

.first([_method, min_count]) Compute first of group values.

.last([_method, min_count]) Compute last of group values.

.max([_method, min_count]) Compute max of group values.

.mean([_method]) Compute mean of groups, excluding missing values.

.median([_method]) Compute median of groups, excluding missing

values.

.min([_method, min_count]) Compute min of group values.

.prod([_method, min_count]) Compute prod of group values.

.std([ddof]) Compute standard deviation of groups, excluding

missing values.

.sum([_method, min_count]) Compute sum of group values.

.var([ddof]) Compute variance of groups, excluding missing

values.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.first.html#pandas.core.resample.Resampler.first
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.last.html#pandas.core.resample.Resampler.last
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.max.html#pandas.core.resample.Resampler.max
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.mean.html#pandas.core.resample.Resampler.mean
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.median.html#pandas.core.resample.Resampler.median
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.min.html#pandas.core.resample.Resampler.min
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.prod.html#pandas.core.resample.Resampler.prod
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.std.html#pandas.core.resample.Resampler.std
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.sum.html#pandas.core.resample.Resampler.sum
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.var.html#pandas.core.resample.Resampler.var

APPENDIX

• Methods for removing outliers on each feature independently:

– Interquartile Range (IQR) method

• Outliers are considered data points:

– below Q1 – 1.5*IQR

– above Q3 + 1.5*IQR

Removing outliers

import seaborn as sns

import matplotlib.pyplot as plt

df2 = pd.DataFrame({'age': [18, 19, 44, 20, 21, 22, 18, 23, 9, 28, 23, 24, 22, 34, 3, 22, 24, 22, 23,

21, 35, 20, 24]})

plt.subplot(1,2,1)

sns.lineplot(data=df2, y=df2['age'], x=df2.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 = df2['age'].quantile(0.25)

Q3 = df2['age'].quantile(0.75)

IQR = Q3-Q1

maximum = Q3 + 1.5*IQR

minimum = Q1 - 1.5*IQR

df3 = df2[(df2['age'] > minimum) & (df2['age'] < maximum)]

plt.subplot(1,2,2)

sns.lineplot(data=df3, y=df3['age'], x=df3.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 – 1.5*IQR Q3 + 1.5*IQR

Outliers removed

After outlier removalInitial dataframe

Dataframe displot

Removing outliers

– Mean (μ) and Standard Deviation (σ) method

• For features that follow the normal distribution

• Outliers are considered data points:

– below μ – 3*σ

– above μ + 3*σ

mean = df2['age'].mean()

std = df2['age'].std()

maximum = mean + 3*std

minimum = mean - 3*std

df4 = df2[(df2['age'] > minimum) & (df2['age'] < maximum)]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

No outliers removed

here

Removing outliers

– Median and Median Absolute Deviation (mad) method

• Replaces the mean and standard deviation

with more robust statistics such as the median

and median absolute deviation

• Outliers are considered data points:

– below median – 3*mad

– above median + 3*mad

import scipy as sp

median = df2['age'].median()

mad = sp.stats.median_abs_deviation(df2['age'])

maximum = median + 3*mad

minimum = median - 3*mad

df4 = df2[(df2['age'] > minimum) & (df2['age'] < maximum)]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

Outliers removed

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛

Step 1: Find the median.

Step 2: Subtract the median from each x-value using the

formula |xi – median|.

Step 3: find the median of the absolute differences.

Mean/std vs Median/mad

• Mean and std are highly affected by outliers

– All values (including outliers) are used to calculate the mean and std

• Median and MAD are not highly affected by outliers

– Outlier changes only center value(s) which are used to calculate the median

• Example:

– dataset: {2,3,5,6,9}

• mean = 5, std = 2.738, median = 5, mad = 2

– Add outlier value 1000 to dataset

– dataset: {2, 3, 5, 6, 9, 1000}

• mean = 170.83, std = 406.21, median = (5+6)/2 = 5.5, mad = 3

– The outlier

• increases mean by 165.83 and std by 403.472

• increases median by 0.5 and mad by 1

	Slide 1: EPL448: Data Mining on the Web – Lab 6
	Slide 2: Prepare data for machine learning
	Slide 3: Cleaning data
	Slide 4: Cleaning data
	Slide 5: Cleaning data
	Slide 6: Cleaning data
	Slide 7: Missing values manipulation
	Slide 8: Missing values manipulation
	Slide 9: Missing values manipulation
	Slide 10: Drop rows with missing values
	Slide 11: Drop columns with missing values
	Slide 12: Fill in missing values
	Slide 13: Fill in missing values with imputation
	Slide 14: Fill in missing values with imputation
	Slide 15: Encoding categorical data
	Slide 16: Label Encoding
	Slide 17: Ordinal Encoding
	Slide 18: Label & Ordinal Encoding: OrdinalEncoder
	Slide 19: One-Hot Encoding
	Slide 20: One-Hot Encoding: OneHotEncoder
	Slide 23: Drawbacks of One-Hot
	Slide 24: Cyclical feature encoding
	Slide 25: Data Transformation: Scaling data
	Slide 26: Data Transformation: Scaling data
	Slide 27: Data Transformation: Scaling data
	Slide 28: Data Transformation: Scaling data
	Slide 29: Data Transformation: Scaling data
	Slide 30: When to normalize or standardize features?
	Slide 31: Scale or normalize label or ordinal encoded data when using distance-based algorithms?
	Slide 32: Scale or normalize one-hot encoded data when using distance-based algorithms?
	Slide 33: When to normalize or standardize target?
	Slide 35: Data Transformation: Scaling data
	Slide 36: Data Transformation: Unskewing data
	Slide 37: Effects of skewed data
	Slide 38: Unskewing transformations
	Slide 39: Unskewing transformations
	Slide 40: Unskewing transformations: Examples
	Slide 41: Appendix
	Slide 42: Resampling data
	Slide 43: Resampling data – Example
	Slide 44: Resampling data – Example
	Slide 45: Resampling data – Upsampling
	Slide 46: Resampling data – Upsampling filling strategies
	Slide 47: Resampling data – Upsampling
	Slide 48: Resampling data – Downsampling
	Slide 49: Resampling data – Downsampling aggregation strategies
	Slide 50: APPENDIX
	Slide 51: Removing outliers
	Slide 52: Removing outliers
	Slide 53: Removing outliers
	Slide 54: Mean/std vs Median/mad

