
University of Cyprus

Department of 

Computer Science

EPL448: Data Mining 

on the Web – Lab 6

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01



Prepare data for machine learning

• Data preparation is the process of gathering, combining, structuring and 

organizing data so it can be used in Exploratory Data Analysis (statistical 

analysis and visualization) and Predictive Modelling

– Gather/combine data: Finding the right data. This can come from databases, files (.csv, 

.json), APIs, social media, statistical services

• We can combine data (e.g. use features from multiple sources) to provide more information to the 

predictive modelling technique, helping it make better predictions

– Preprocess data: Organize your selected data by formatting, cleaning, encoding and 

resampling.

• Cleaning data is the fixing/deleting/filling in missing data

• Encoding is the conversion of labeled/categorical text-based data into numerical data

• Resampling is about changing the frequency of observations (in time-depended data)

– Transform data: Transform preprocessed data by engineering features using scaling, 

unskewing, feature selection and feature extraction (next lab) for achieving better 

performance of predictive modelling methods

• Scaling is the process of rescaling or standardizing or normalizing features

• Unskewing is making features’ distribution symmetrical



Cleaning data

• Fixing up formats

– Often when data is coming from various international sources may (a) involve 

mixed formats, and/or (b) not follow the expected numeric syntax 

• decimal separator is dot (need to be replaced if comma)

• there is no thousands separator (need to be removed if any)

• monetary symbols before or after numbers (need to be removed if any)

– Data may not follow the default (expected by Python plots or functions) 

formats

• e.g. dates as integers 20090609231247 instead of the expected format 2009-06-09 

23:12:47 (ISO 8601 format) need to be transformed



Cleaning data

• Deleting missing values

– may delete rows if the number of these rows is relatively small compared to 

the dataset 

• e.g. do not account for more than 10% of all lines

– may delete rows if rows to be deleted are not important

• e.g. do not contain info about a specific category in dataset

– missing ages in some rows may correspond to older and more privacy or conscious users and 

are important in the decision-making process, so cannot be removed

– This is not an easy task, especially if we are not familiar with the dataset

– action can be performed with Pandas dropna(), see next slides



Cleaning data

• Filling in missing values usually on a column-by-column basis

– For categorical data (e.g. device type, countries) makes sense to create a new 

category ‘unknown’

– For numerical values (e.g. age) makes sense to use:

• Statistical aggregations such as mean or median of either (a) the rest values of the column 

or (b) take into account values belonging to the same category of that of the missing value

• Interpolation: applied on time-series data, see slides about sampling

– Build a predictors to predict a missing value

• Correcting erroneous values

– In a dataset, some values can be identified (using statistical analysis or 

visually e.g. see distribution or box plots) as obviously incorrect

• E.g. find a number in a gender column, an age column with values below 0 or well over 100

– Can be deleted and then treated as missing values



Cleaning data

• Handling outliers (=values that differ significantly from other observations)

– Important step in data preprocessing, as outliers can distort your model's 

performance (e.g. in regression and distance-based algorithms like k-NN) 

– Decision to remove outliers should be made carefully, as sometimes outliers 

can represent important variability in the data

– Outlier removal techniques can be found in Appendix

• Standardizing categories

– When data collected directly from users, especially from text fields → spelling 

mistakes, language differences → a given answer may be provided in multiple 

ways

• E.g. country: USA, United States, U.S

• E.g. dates: 1982-10-01, 1/10/1982

– Goal: standardize values to ensure that there is only one version of each value



Missing values manipulation

• Missing values are marked as NaN
In [ ]: # Read a dataset with missing values (download zipped dataset from here)

nfl_data = pd.read_csv('NFL Play by Play 2009-2016 (v3).csv', dtype='unicode')

nfl_data.head()

Out[ ]: Date              GameID  ...               yacWPA Season

0  2009-09-10  2009091000  ...                  NaN   2009

1  2009-09-10  2009091000  ...  0.03689896441538476   2009

2  2009-09-10  2009091000  ...                  NaN   2009

3  2009-09-10  2009091000  ...  -0.1562385319864913   2009

4  2009-09-10  2009091000  ...                  NaN   2009

In [ ]: nfl_data.isnull().head()

Out[ ]: Date  GameID  Drive    qtr   down  ...  Win_Prob    WPA  airWPA  yacWPA  Season

0  False   False  False  False   True  ...     False  False    True    True   False

1  False   False  False  False  False  ...     False  False   False   False   False

2  False   False  False  False  False  ...     False  False    True    True   False

3  False   False  False  False  False  ...     False  False   False   False   False

4  False   False  False  False  False  ...     False  False    True    True   False

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB06/NFL%20Play%20by%20Play%202009-2016%20(v3).zip


Missing values manipulation

• Methods to deal with missing values in the data frame:

df.method() description

dropna() Drop observations (rows) with at least one missing value

dropna(axis=1) Drop the columns where at least one value is missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with a specified value

ffill() Replace missing values by propagating the last valid observation to next valid

bfill() Replace missing values by using the next valid observation to fill the gap

isnull() returns True if the value is missing

notnull() Returns True for non-missing values



Missing values manipulation

9

In [ ]: # get the number of missing data points per column; sum True values

missing_values_count = nfl_data.isnull().sum()

# look at the # of missing points in the first ten columns

missing_values_count[0:10]

Out[ ]: Date                0

GameID              0

Drive               0

qtr                 0

down            54218

time              188

TimeUnder           0

TimeSecs          188

PlayTimeDiff      374

SideofField       450

dtype: int64

• Evaluate the number of missing values per column:

• The more missing values a feature (column) has, the less reliable 

the data in that column might be → feature is less important

• Knowing how many missing values exist helps assess whether to 

keep, impute, or drop those columns
• If a column or row has too many missing values, you might consider 

dropping it from the analysis, as it could contribute little to the 

model's accuracy



Drop rows with missing values
In [ ]: # remove all the rows that contain a missing value

nfl_data.dropna()

Out[ ]:

It looks like that's removed all our data! This is because 
every row in our dataset had at least one missing value.



Drop columns with missing values
In [ ]: # remove all columns with at least one missing value

columns_cleaned = nfl_data.dropna(axis=1)

columns_cleaned.head()

Out[ ]: Date      GameID Drive  ... ExPoint_Prob TwoPoint_Prob Season

0  2009-09-10  2009091000     1  ...            0             0   2009

1  2009-09-10  2009091000     1  ...            0             0   2009

2  2009-09-10  2009091000     1  ...            0             0   2009

3  2009-09-10  2009091000     1  ...            0             0   2009

4  2009-09-10  2009091000     1  ...            0             0   2009

[5 rows x 41 columns]

In [ ]: # just how much data did we lose?

print("Columns in original dataset: %d" % nfl_data.shape[1])

print("Columns with na's dropped: %d" % columns_cleaned.shape[1])

Out[ ]: Columns in original dataset: 102 

Columns with na's dropped: 41

nfl_data.dropna(axis=1, subset=["down", "SideofField"])

We can also define in which columns to look for missing values.



Fill in missing values

• One option we have is to specify what we want the NaN values to 

be replaced with

• Another option is to replace missing values with the first valid value 

comes after it in the same column

– This makes a lot of sense for datasets where the observations have some 

sort of logical order

In [ ]: # replace all NA's with 0

nfl_data = nfl_data.fillna(0)

# replace all NA's with 0 for a specific column

nfl_data['yacWPA'] = nfl_data['yacWPA'].fillna(0)

In [ ]: # replace all NA's the first valid value that comes after it in the 

same column, then replace all the remaining na’s (if any) with 0

nfl_data = nfl_data.bfill(axis=0).fillna(0)



Fill in missing values with imputation

• Imputation fills in the missing value with some number

• Imputed value won't be exactly right in most cases, but it usually 

gives more accurate models than dropping the column entirely

– SimpleImputer takes two arguments such as missing_values and strategy

• Strategy can be set to mean, median, most_frequent, constant (with fill_value argument)

– Numerical missing values: mean, median, most frequent, constant

– Categorical missing values: most frequent, constant

– fit_transform method is invoked on the instance of SimpleImputer to impute 

the missing values

In [ ]: # Using Sklearn’s simple imputer

from sklearn.impute import SimpleImputer

import numpy as np

my_imputer = SimpleImputer(missing_values=np.NaN, strategy='mean')

nfl_data[['yacWPA']] = my_imputer.fit_transform(nfl_data[['yacWPA']])

DataFrame nfl_data[['yacWPA']] accepted.

Series nfl_data['yacWPA'] not accepted



Fill in missing values with imputation

• Strategy = mean

Date      GameID  ...               yacWPA Season

0  2009-09-10  2009091000  ...                  NaN   2009

1  2009-09-10  2009091000  ...  0.03689896441538476   2009

2  2009-09-10  2009091000  ...                  NaN   2009

3  2009-09-10  2009091000  ...  -0.1562385319864913   2009

4  2009-09-10  2009091000  ...                  NaN   2009

Date      GameID  ...               yacWPA Season

0  2009-09-10  2009091000  ...      -0.010492   2009

1  2009-09-10  2009091000  ...  0.03689896441538476   2009

2  2009-09-10  2009091000  ...      -0.010492   2009

3  2009-09-10  2009091000  ...  -0.1562385319864913   2009

4  2009-09-10  2009091000  ...      -0.010492   2009

nfl_data.head()

Before imputation

After imputation



Encoding categorical data

• Machine learning models require all input variables (features) to be 

numerical

• Categorical text-based data must be encoded to numbers

• Popular techniques:

– Label Encoding

– Ordinal Encoding

– One-Hot Encoding (or Dummy Variable Encoding)

– Effect Encoding

– Bin counting

– Feature Hashing

• Scikit-learn lib involves a few encoders but category_encoders lib has 

more with useful properties conda install -c conda-forge category_encoders

(website: http://contrib.scikit-learn.org/category_encoders)

http://contrib.scikit-learn.org/category_encoders


Label Encoding

• Assigns a unique integer value to each category in a categorical 

feature

– For example, if a feature has three categories: "Red", "Green", "Blue", Label 

Encoding could assign them numerical values like:

• "Red" → 0, "Green" → 1, "Blue" → 2

• We use label encoding when the categorical feature is nominal 

(without inherent order)

• The numbers assigned are arbitrary and don’t carry any meaning in 

terms of ranking or size

• Potential issue: implies ordinal relationships between categories 

– e.g. Red (0) seems to be closer to Green (1) than to Blue (2)

– high ordinal values possess higher “weight” and may be considered of higher 

importance especially in distance-based ML techniques



Ordinal Encoding

• Ordinal encoding is essentially label encoding, where each category 

is a assigned a unique value. However, ordinal encoding takes into 

account the order of the categories

• We use ordinal encoding when the categorical feature is ordinal 

(with natural, ordered values) and retaining the order is important

• Encoding should reflect the sequence

Natural order: 

'High school':1

'Diploma':2

'Bachelors':3

'Masters':4

'Phd':5



Label & Ordinal Encoding: OrdinalEncoder
import category_encoders as ce

import pandas as pd

df=pd.DataFrame(

{'Degree':['High school', 'Masters', 'Diploma', 

'Bachelors', 'Bachelors', 'Masters', 'Phd', 'High 

school', 'High school']})

#Original data

df

# create object of Ordinal encoding

ordinal_encoder= ce.OrdinalEncoder( 

mapping=[{'col':'Degree','mapping':{'None':0,'High 

school':1,'Diploma':2,'Bachelors':3,'Masters':4,

'Phd':5}}])

#fit and transform data

df['Ordinal'] = 

ordinal_encoder.fit_transform(df['Degree'])

df

Note: If no mapping is given, order is automatically chosen by the encoder → Label encoding



One-Hot Encoding

• We use this categorical data encoding technique when the features 

are nominal (do not have any order) and we want to avoid imposing 

ordinal relationships between categories (as in label encoding)

• For each label (value) of a categorical feature, we create a new 

feature (column)

• Each label is mapped with a binary feature containing either 0 or 1 

– 0 represents absence, and 1 represents the presence of that category value

• These newly created binary features are known as Dummy variables

• The number of dummy variables depends on the labels (categories) 

present in the categorical variable

• One-hot can be used over label encoding on nominal data when 

distance-based machine learning techniques will be used



One-Hot Encoding: OneHotEncoder
# Create object for One-hot encoding

onehot_encoder=ce.OneHotEncoder(cols=['Degree'], use_cat_names=True)

#fit and transform data

df_onehot = onehot_encoder.fit_transform(df)

df_onehot

Dummy variables

a list of columns to encode, if None, all 

string columns will be encoded



Drawbacks of One-Hot

• If there are multiple labels (categories) in a feature ➔ we need a 

similar number of dummy variables to encode the data

– For example, a feature with 30 different values will require 30 new dummy 

variables for coding

• If there are multiple categorical features in the dataset we will end 

with a high number of binary features

• Due to the massive increase in the dataset, coding slows down the 

learning of the model along with deteriorating the overall 

performance that ultimately makes the model computationally 

expensive.



Cyclical feature encoding

• When dealing with time-dependent data (e.g. months, days, hours) it’s 

important to encode the properties of time properly

– Decompose datetime string to a set of new features: month (1-12), day of the 

month (1, 2, .. 31), hour (0-23), minute (0-59), day (Sun→1, Mon→2, .. Sat→7)

• The numerical values of each column distort the notion of proximity, i.e. in the hour feature, 

midnight is represented by 0 and eleven (PM) in the evening is represented by 23 => large 

difference in weights

– Cyclical encoding: a better way is to represent time of day as a point on the 

unit circle, using sine and cosine transformation

data['hour_sin'] = np.sin(2 * np.pi * data['hour']/23.0)

data['hour_cos'] = np.cos(2 * np.pi * data['hour']/23.0)

11 PM is close to 12 

midnight in terms of 

sin and cos



Data Transformation: Scaling data

• Feature rescaling

– Some classification/regression/clustering techniques (see next slide) use the 

notion of distance (e.g. Euclidean) to measure similarity between 2 

observations

– Example

• Classify houses with 2 features

• 𝑥1 = 𝑠𝑖𝑧𝑒 0 − 2000𝑚2

• 𝑥2 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 1 − 5

• 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋1, 𝑋2 = 523 − 127 2 + 4 − 2 2

• Distance is governed by features having boarder range of values

– When distance is used by algorithms make sure features are on a similar 

scale

– Target value (to be predicted) is not necessary to be scaled

𝑋 =
523 4
127 2
25 1

Feature x1 with high 

magnitudes weights a lot 

more (dominates) in the 

distance calculations 

than feature x2 with low 

magnitudes



Data Transformation: Scaling data

• Some examples of algorithms where feature scaling matters are:

– k-nearest neighbors (kNN) for classification uses Euclidean distance

– k-means for clustering uses Euclidean distance

– gradient descent/ascent-based optimization used in logistic regression, 

Support Vector Machines (SVMs), neural networks etc.

• Weights for features with higher magnitudes will update much faster than others

– linear discriminant analysis (LDA), principal component analysis (PCA)

• you want to find directions of maximizing the variance (under the constraints that those 

directions/eigenvectors/principal components are orthogonal)

• Decision trees and ensembles of trees are unaffected by the scale 

of feature variables. Examples:

– bagging like RandomForest

– boosting like AdaBoost, Gradient Boosting, XGBoost, LightGBM, CatBoost



Data Transformation: Scaling data

• Feature rescaling

– Rescale each feature individually into a given range, e.g. [0, 1]

– Scikit-learn module: MinMaxScaler or MaxAbsScaler

• MinMaxScaler: Transforms features by scaling each feature to a given range (xmin → xmax).

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑟𝑒𝑠𝑐 =
𝑥𝑖,𝑗 − m𝑖𝑛(𝑥𝑗)

max 𝑥𝑗 − min(𝑥𝑗)
⇒ 𝑥𝑟𝑒𝑠𝑐 =

0.25
0
1

1
0

0.55

from sklearn.preprocessing import MinMaxScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

# create the scaler object

scaler = MinMaxScaler(feature_range=(0, 1))

# train the scaler (find min and max)

scaler.fit(df)

# scale the dataset (apply the transformation)

minMaxRescaledX = scaler.transform(df)

print(minMaxRescaledX)

minMaxRescaledX = 

scaler.fit_transform(df)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.htm
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing


Data Transformation: Scaling data

StandardScaler

• Feature standardization

– Rescales each feature individually to make values have zero mean 𝜇 = 0  

and unit variance 𝜎2 = 1

– Centers values around zero and adjusts their spread so that variance is 1

– Benefits features that are approximately normally distributed (gaussian)

– Useful for distance-based algorithms such as the SVM (RBF kernel) and 
when using gradient-based optimization methods

– Scikit-learn module: StandardScaler

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑠𝑡𝑑 =
𝑥𝑖,𝑗 − m𝑒𝑎𝑛(𝑥𝑗)

𝜎
⇒ 𝑥𝑠𝑡𝑑 =

−0.39
−0.98
1.37

 
1.86

−1.226
0.07

from sklearn.preprocessing import StandardScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

scaler = StandardScaler()

# train the standardizer (find mean, std) and standardize the dataset

standardRescaledX = scaler.fit_transform(df)

print(standardRescaledX)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html


Data Transformation: Scaling data

• Feature robust standardization

– When data contains outliers, mean value and variance used by the Standard 

Scaler can distort the rescaled values

• MinMaxScaler is also sensitive to the presence of outliers as well

– Robust standardization is to rescale each feature individually to make 

values have zero median (median=0) and unit interquartile range (IQR=1)

– Centers values around 25th and 75th percentiles (within the IQR)

– Benefits features with non-gaussian distributions, particularly those with 

outliers or skewed (long-tailed) distributions

– Scikit-learn module: RobustScaler

Compare the effect of different scalers on data with outliers

from sklearn.preprocessing import RobustScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

rscaler = RobustScaler().fit(df)

# train the standardizer (find median, quantiles) and standardize the dataset

robustRescaledX = rscaler.fit_transform(df)

print(robustRescaledX)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py


When to normalize or standardize features?

• ANS: When features have different scales + distance-based or 
gradient-based predictive techniques are to be used

• The choice of using normalization (MinMax scaler), standardization 
(Standard scaler) or robust standardization (Robust scaler) depends 
on the nature (distribution) of data (features)

• Normalization is applied on features having different ranges without 
outliers or with outliers which don’t significantly affect the mean if you 
want to keep the values within a specific range

• Standardization is applied on features are that approximately normally 
distributed and either have no outliers or have outliers but they don’t 
significantly affect the mean

• Robust standardization is applied on features with significant outliers 
or skewed (long-tailed) distributions



Scale or normalize label or ordinal encoded data when 

using distance-based algorithms?

• Depends on the nature of your data

• When to scale:
– If an encoded feature has many levels, scaling might help normalize its 

influence compared to other features

– If using ordinal encoding and values represent a meaningful quantitative scale:
• the ordinal values are evenly spaced (e.g., survey responses like “Strongly Disagree” to 

“Strongly Agree” encoded as 1 to 5), min-max scaling will preserve the underlying 
quantitative relationships (other scaler may not be appropriate → distort relationships)

• When not to scale:
– If the values are purely categorical with arbitrary intervals

• In ordinal encoding for example, education levels (e.g., "High School" → 1, "Bachelor's" → 
2, "Master's" → 3) don’t have meaningful, fixed numerical intervals

• In label encoding which assigns arbitrary integer values to categories (e.g., "Red" = 0, 
"Green" = 1, "Blue" = 2), these integers don't reflect a true order or distance

   scaling such values (getting them closer or further) can imply a relationship 
   that doesn’t exist



Scale or normalize one-hot encoded data when using 

distance-based algorithms?

• Scaling features being one-hot-encoded is not recommended:

– Binary values don’t require scaling

• One-hot encoding creates binary (0 or 1) columns. Scaling these values won’t add useful 

information, as they already clearly indicate the presence (1) or absence (0) of a category.

– Categorical represenation is distorted

• Scaling one-hot encoded features would produce non-binary values that don’t make 

intuitive sense in the context of categorical representation. For instance, a scaled value of 

0.5 would have no clear interpretation between 0 and 1.

– Distance-based algorithms

• Distance-based algorithms (like KNN) can handle binary features effectively without scaling 

by using a custom distance metric



When to normalize or standardize target?

• Normalization and standardization of target variable is generally not 

required but can be beneficial especially in regression tasks, under 

specific circumstances:

– Wide Range of Values: If the target variable has a wide range of values 

(e.g., income ranging from hundreds to millions), models like linear 

regression might give undue weight to large values. Thus, normalizing or 

standardize the target variable can help the model avoid being biased 

toward large numbers

– For algorithms like gradient descent (used in linear regression, neural 

networks), scaling the target can be essential because the magnitude of the 

target values can affect the convergence speed



Data Transformation: Scaling data

• Normalize observations (rows)

– Normalize each observation (row) independently of other rows so that its 

norm (I1 or I2) equals 1

– Normalizing to unit norm helps ensure that each row contributes equally to 

the distance metrics used in algorithms, preventing any single row from 

disproportionately affecting the results.

• Useful for sparse datasets (lots of zeros) to prevent zeros from skewing data

– Commonly used in text classification or clustering

• dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and 

is the base similarity metric for the Vector Space Model

– Scikit-learn module: Normalizer

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑛𝑜𝑟𝑚 =
𝑥𝑖,𝑗

σ𝑘=0
𝑛 𝑥𝑖,𝑘

2

⇒ 𝑥𝑛𝑜𝑟𝑚 =
0.29
0.83
0.66

 0.96
 0.55
 0.75

0.292 + 0.962 = 1

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html


Data Transformation: Unskewing data

• Data is skewed when its distribution curve is asymmetrical as 

compared to a normal distribution curve that is perfectly symmetrical

• Skewness is the measure of the asymmetry

– The skewness for a gaussian or normal distribution is 0

Left / negative skew:

Long tail is on the left / 

negative side of the 

peak

Right / positive skew:

Long tail is on the right 

/ positive side of the 

peak

No skew 

(symmetrical 

distribution) 

Mean

Median Median

Mean

Median

Mean



Effects of skewed data

• Skewness of (an input or target) variable may degrade the predictive 

model’s ability to predict values towards the long tail side

– A regression model for predicting house sale prices or using house sale price 

as input feature (using the above dataset) will be trained on a much larger 

number of moderately priced houses and will be less likely to successfully 

predict the price for the most expensive houses

Right skewed: there is a 

minority of very large 

values

Distribution of the house 

sale prices from Kaggle’s 

House Price Competition 



Unskewing transformations

• When removing skewness, transformations are attempting to change 

the shape of the distribution; to make it symmetric (Gaussian)

– If a dataset can be transformed to be statistically close enough to a Gaussian 

dataset, some machine learning algorithms such as Linear Regression, 

Logistic Regression, SVM (with RBF kernel), Gaussian Naïve Bayes are able 

to achieve better predictive performance (see Lab 8 for more info)

– However, other machine learning models e.g. decision trees and ensembles 

of trees (bagging, boosting) are not affected by skewness (see Lab 8 for more 

info)

• Unskewing transformations are recommended to be applied on 

highly-skewed variables (input features and target variable)

• Min-max scaler, standard scaler and robust scaler do not change the 

skew (shape) of the distribution; other techniques are needed

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb
https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb


Unskewing transformations

• Square Root (SQRT) transformation

• Log(arithmic) transformation

• Boxcox & Yeo-Johnson transformations
– Box-Cox can handle both right and left skewed 

distributions but can only be applied to values 

that are strictly positive

– Yeo-Johnson can also handle both right and 

left skewed distributions and can be applied to 

both positive and negative values

import numpy as np

np.sqrt(df.column)

from scipy.stats import boxcox

df['bc_col'] = boxcox(df['col'])

from scipy.stats import yeojohnson

df['yj_col'] = yeojohnson (df['col'])

import numpy as np

np.log(df.column)

• work well on 

right skewed 

distributions 

• applicable on features with 

strictly positive values (sqrt 

and log cannot be applied on 

negative values) 



Unskewing transformations: Examples

• Pandas .skew() method can be used to measure skewness of data

• Source code and results are available in .ipynb file in course website

• A quite descriptive document on skewness can be found here

Original SalePrice column

Skewness: 1.8828757

SQRT transformation

Skewness: 0.9431527

LOG transformation

Skewness: 0.1213351

BoxCox transformation

Skewness: -0.0086529

YeoJohnson transform

Skewness: -0.0086536

https://www.analyticsvidhya.com/blog/2020/07/what-is-skewness-statistics/


APPENDIX
Resampling will be further discussed in lab about Timeseries data



Resampling data 

• Resampling involves changing the frequency of time-dependent 

features (called timeseries)

• Two types of resampling are:

– Upsampling: When you increase the frequency of the samples (higher 

granularity), such as from minutes to seconds

– Downsampling: When you decrease the frequency of the samples (lower 

granularity), such as from minutes to hours

• Resampling may be required if:

– data is not available at the same frequency that you want to make predictions

• For example, you have a feature measured on a daily basis and you want to make 

predictions on a monthly basis => you need to downsample it to a monthly level

– there is an extremely high number of observations that needs to be 

diminished to speedup both EDA and ML algorithms execution time

• Need for downsampling



Resampling data – Example

• Shampoo dataset: describes the monthly number of sales of 

shampoo over a 3-year period (2001 to 2003) – 36 observations

• Load dataset

from pandas import read_csv

from datetime import datetime

shampoo_df = read_csv('shampoo.csv')

print(shampoo_df.head())

# convert Month feature (e.g. from 1-01 20 2001-01-01)

shampoo_df['Month'] = shampoo_df['Month'].map(lambda m: datetime.strptime('200'+m, '%Y-%m'))

# dataframe must have a datetime-like index in order to use resample function

# set Month feature as index

shampoo_df = shampoo_df.set_index('Month')

print(shampoo_df.head())

https://cs.ucy.ac.cy/courses/EPL448/labs/LAB05/shampoo.csv


Resampling data – Example
plt.figure(1,figsize=(15,4))

sns.lineplot(data=shampoo_df, x=shampoo_df.index, y=shampoo_df.Sales)

plt.title('Original dataset') 

plt.show()



• Resample by day

Resampling data – Upsampling

# forward fill

daily=shampoo_df.resample('D').ffill()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Forward filling') 

plt.show()

print(daily.head())

Resampling can be performed by: 

second (‘s’), minute (‘min’), hour (‘h’), 

day (‘D’), week (‘W’), month end (‘ME’), 

quarter end (‘QE’), year end (‘YE’)

Forward-filling imputed missing values 

using the last observed value.



Resampling data – Upsampling filling strategies

.ffill([limit]) Forward fill the values.

.backfill([limit]) Backward fill the new missing values in the 

resampled data.

.bfill([limit]) Backward fill the new missing values in the 

resampled data.

.pad([limit]) Forward fill the values.

.nearest([limit]) Resample by using the nearest value.

.fillna(method[, limit]) Fill missing values introduced by upsampling.

.asfreq([fill_value]) Return the values at the new freq, essentially a 

reindex.

.interpolate([method, axis, limit, ...]) Interpolate values according to different methods.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.ffill.html#pandas.core.resample.Resampler.ffill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.backfill.html#pandas.core.resample.Resampler.backfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.bfill.html#pandas.core.resample.Resampler.bfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.pad.html#pandas.core.resample.Resampler.pad
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.nearest.html#pandas.core.resample.Resampler.nearest
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.fillna.html#pandas.core.resample.Resampler.fillna
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.asfreq.html#pandas.core.resample.Resampler.asfreq
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.interpolate.html#pandas.core.resample.Resampler.interpolate


• Resample by day, filling by interpolation

Resampling data – Upsampling

# linear interpolation
daily=shampoo_df.resample('D').interpolate(method='linear')

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Linear interpolation')

plt.show()

# spline interpolation
daily=shampoo_df.resample('D').interpolate(method='spline', order=2)

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Spline interpolation (order=2)')

plt.show()



Resampling data – Downsampling

• Resample by quarter, aggregate by sum and mean

# sum aggregation
quarterly=shampoo_df.resample('QE').sum()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index, 

y=quarterly.Sales)

plt.title('Quarterly (sum)')

plt.show()

# mean aggregation
quarterly=shampoo_df.resample('QE').mean()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index, y=quarterly.Sales)

plt.title('Quarterly (mean)')

plt.show()



Resampling data – Downsampling aggregation strategies

.first([_method, min_count]) Compute first of group values.

.last([_method, min_count]) Compute last of group values.

.max([_method, min_count]) Compute max of group values.

.mean([_method]) Compute mean of groups, excluding missing values.

.median([_method]) Compute median of groups, excluding missing 

values.

.min([_method, min_count]) Compute min of group values.

.prod([_method, min_count]) Compute prod of group values.

.std([ddof]) Compute standard deviation of groups, excluding 

missing values.

.sum([_method, min_count]) Compute sum of group values.

.var([ddof]) Compute variance of groups, excluding missing 

values.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.first.html#pandas.core.resample.Resampler.first
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.last.html#pandas.core.resample.Resampler.last
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.max.html#pandas.core.resample.Resampler.max
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.mean.html#pandas.core.resample.Resampler.mean
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.median.html#pandas.core.resample.Resampler.median
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.min.html#pandas.core.resample.Resampler.min
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.prod.html#pandas.core.resample.Resampler.prod
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.std.html#pandas.core.resample.Resampler.std
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.sum.html#pandas.core.resample.Resampler.sum
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.var.html#pandas.core.resample.Resampler.var


APPENDIX



• Methods for removing outliers on each feature independently:

– Interquartile Range (IQR) method

• Outliers are considered data points:

– below Q1 – 1.5*IQR

– above Q3 + 1.5*IQR

Removing outliers

import seaborn as sns

import matplotlib.pyplot as plt

df2 = pd.DataFrame({'age': [18, 19, 44, 20, 21, 22, 18, 23, 9, 28, 23, 24, 22, 34, 3, 22, 24, 22, 23, 

21, 35, 20, 24]})

plt.subplot(1,2,1)

sns.lineplot(data=df2, y=df2['age'], x=df2.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 = df2['age'].quantile(0.25)

Q3 = df2['age'].quantile(0.75)

IQR = Q3-Q1

maximum = Q3 + 1.5*IQR

minimum = Q1 - 1.5*IQR

df3 = df2[ (df2['age'] > minimum) & (df2['age'] < maximum) ]

plt.subplot(1,2,2)

sns.lineplot(data=df3, y=df3['age'], x=df3.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 – 1.5*IQR Q3 + 1.5*IQR

Outliers removed

After outlier removalInitial dataframe

Dataframe displot



Removing outliers

– Mean (μ) and Standard Deviation (σ) method

• For features that follow the normal distribution

• Outliers are considered data points:

– below μ – 3*σ

– above μ + 3*σ

mean = df2['age'].mean()

std = df2['age'].std()

maximum = mean + 3*std

minimum = mean - 3*std

df4 = df2[ (df2['age'] > minimum) & (df2['age'] < maximum) ]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

No outliers removed

here



Removing outliers

– Median and Median Absolute Deviation (mad) method

• Replaces the mean and standard deviation 

with more robust statistics such as the median

and median absolute deviation

• Outliers are considered data points:

– below median – 3*mad

– above median + 3*mad

import scipy as sp

median = df2['age'].median()

mad = sp.stats.median_abs_deviation(df2['age'])

maximum = median + 3*mad

minimum = median - 3*mad

df4 = df2[ (df2['age'] > minimum) & (df2['age'] < maximum) ]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

Outliers removed

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛

Step 1: Find the median.

Step 2: Subtract the median from each x-value using the 

formula |xi – median|. 

Step 3: find the median of the absolute differences.



Mean/std vs Median/mad

• Mean and std are highly affected by outliers

– All values (including outliers) are used to calculate the mean and std

• Median and MAD are not highly affected by outliers

– Outlier changes only center value(s) which are used to calculate the median

• Example: 

– dataset: {2,3,5,6,9} 

• mean = 5, std = 2.738, median = 5, mad = 2

– Add outlier value 1000 to dataset

– dataset: {2, 3, 5, 6, 9, 1000}

• mean = 170.83, std = 406.21, median = (5+6)/2 = 5.5, mad = 3

– The outlier

• increases mean by 165.83 and std by 403.472

• increases median by 0.5 and mad by 1
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