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Feature selection & Feature extraction

• Used to eliminate the number of features (columns) leading to:

– Less computation time when training predictive modelling algorithms

– Noise reduction by discarding irrelevant or redundant features

– Easier to understand (interpretable) feature set, easier to visualize dataset

• Useful in datasets with large number of features that may not all 
contribute meaningfully to the prediction task.

• Feature selection: Select a subset of the original feature set

• Feature extraction: Build a new set of 
features from the original feature set

– Dimensionality Reduction techniques: used for 
mapping observations in high-dimensional (high 
number of features) space to lower number of 
dimensions (features) while preserving structure, 
e.g pairwise distances, between observations



Feature selection

• Select a subset of the original feature set

– Feature selection using statistical techniques: select features based on their 

statistical properties or statistical relationship with target variable (e.g., 

correlation, variance, chi-squared test) 

• fast but not accurate methods

– Feature selection using feature importance: ensemble predictive modelling 

techniques (e.g., decision trees, random forest, gradient boosting) evaluate 

features importance during their training process

• moderate speed and better accuracy

– Feature selection using the predictive performance of model: iteratively select 

a subset of “important” features based on which the model is trained to 

achieve the highest predictive performance (e.g., forward/backward selection)

• slow (computationally expensive) but accurate methods



Feature selection using correlation

• pandas corr() method to compute pairwise correlation between all 

dataset columns

– available correlation methods: pearson, kendall, spearman

# Wine dataset: 178 wine observations by 13 features. Wines classified into 3 

types.

df = pd.read_csv('wine.csv')

fig, ax = plt.subplots( figsize = ( 12 , 10 ) )

sns.heatmap(df.corr(method='pearson'), annot = True)

http://rasbt.github.io/mlxtend/user_guide/data/wine_data/
https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB07/wine.csv


Feature selection using correlation

Observations:

• Features Phenoids, 

Flavanoids, Hue, OD, 

Proline are highly 

negatively correlated to the 

target value (Wine) ; see 

the first line of the heat map

• Features Phenols & 

Flavanoids are highly 

(positively) correlated to 

each other. One of them 

could be removed if the 

dataset had a large number 

of features. This is not the 

case so we can keep them.

Target variable



Feature selection using variance

• Quick and lightweight way of eliminating features with very low 

variance, i. e. features with not much useful information

– Variance shows how spread out the feature distribution is (the average 

squared distance from the mean)

– If a feature has 0 variance it is completely useless. Using a feature with zero 

variance only adds to model complexity, not to its predictive power.

– Features that go around a single constant are also useless. In other words, 

any feature with close to 0 variance should be dropped.

import numpy as np

np.std([2, 2, 2, 2, 2, 2, 2, 2]) # 0.0

np.std([5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6]) # 0.28747978728803447



Feature selection using variance

• Scikit-learn provides VarianceThreshold estimator that accepts a threshold 

cut-off and removes all features with variance below that threshold

– Often, it is not fair to compare the variance of a feature to another. The reason 

is that as the values in the distribution get bigger, the variance grows 

exponentially. In other words, the variances will not be on the same scale.

X = df.drop(columns=['Wine']) # features dataframe

y = df['Wine']   # target dataframe

X.describe()



Feature selection using variance

• Scikit-learn provides VarianceThreshold estimator that accepts a threshold 

cut-off and removes all features with variance below that threshold

– Often, it is not fair to compare the variance of a feature to another. The reason 

is that as the values in the distribution get bigger, the variance grows 

exponentially. In other words, the variances will not be on the same scale.

The above features all have different medians, quartiles, 

and ranges – completely different distributions. We cannot 

compare these features to each other.

X = df.drop(columns=['Wine']) # features dataframe

y = df['Wine']   # target dataframe

X.describe()



Feature selection using variance

• One method we can use to scale all features is the Robust Scaler 

(see previous lab) which is not highly affected by outliers:

• We use the VarianceThreshold with 

a threshold 0.35 on the X_scaled:

from sklearn.preprocessing import RobustScaler

transformer = RobustScaler().fit(X)

scaled_data = transformer.transform(X)

X_scaled = pd.DataFrame(scaled_data, columns=X.columns)

from sklearn.feature_selection import VarianceThreshold

selector = VarianceThreshold(threshold=0.35)

# Learn variances from X_scaled

_ = selector.fit(X_scaled)

# Get a mask (or integer index if indices=True is set) of the features selected

mask = selector.get_support()

print(mask)

[ True  True  True  True  True False  True  True  True  True  True False True]

False if the corresponding feature is selected to be dropped: Phenols and OD have variance <= 0.35



Feature selection using feature importance

• A set of predictive techniques (ensemble methods) can be used to 

assign scores to input features as part of the training phase. Each 

score indicates the relative importance of each feature when making 

a prediction

– Ensemble methods is a machine learning technique that combines several 

base models in order to produce one optimal predictive model (see more 

here)

• Feature importance scores can be calculated both for problems that 

involve predicting a numerical value, called regression, and those 

problems that involve predicting a class label, called classification 

(studied thoroughly in Labs 8-9)

https://scikit-learn.org/stable/modules/ensemble.html


Feature selection using feature importance

• The scores are useful and can be used in a range of situations in a 

predictive modeling problem, such as:

• Better understanding the data (which feature(s) are important, i.e. influencing 

the decision-making process) 

• Reducing the number of input features (choosing the most important features 

of the dataset for training)



Feature selection using feature importance

• Get feature importance by training an ensemble predictive 

technique (ensemble classifiers/regressors)

– Fit (train) predictive technique on the whole set of features

– Weights are assigned to each feature

# Feature Importance using ExtraTreeClassifier

from sklearn.ensemble import ExtraTreesClassifier

# Build an estimator (forest of trees) and compute the feature importances

estimator = ExtraTreesClassifier(n_estimators=100, max_features= 13, random_state=0)

estimator.fit(X,y)

# Lets get the feature importances. 

# Features with high importance score higher.

importances = estimator.feature_importances_

http://scikit-learn.org/stable/modules/ensemble.html#forest


Feature selection using feature importance

Note: It is recommended to evaluate various classifiers or regressors 

belonging to the sklearn.ensemble module. You may have to play with their 

input parameters for better understanding of the behavior of each model.

Feature ranking:

1. feature 12 - Proline (0.240954)

2. feature 11 - OD (0.162438)

3. feature 6 - Flavanoids (0.149339)

4. feature 0 - Alcohol (0.127384)

5. feature 9 - Color_intensity (0.125520)

6. feature 10 - Hue (0.072550)

7. feature 5 - Phenols (0.031640)

8. feature 1 - Malic_acid (0.027186)

9. feature 4 - Mg (0.021927)

10. feature 3 - Acl (0.013679)

11. feature 8 - Proanth (0.012320)

12. feature 2 - Ash (0.010575)

13. feature 7 - Nonflavanoid_phenols 

(0.004489)

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble


Feature selection using feature importance

• Instead of training an ensemble method only once, we can run the 

training process multiple times.

• Recursive Feature Elimination (RFE) aims at selecting features by 

recursively eliminating the worst feature(s) – having lowest 

importance – at every iteration.

Current set of features = all features

Repeat

1. Predictive ensemble technique trained on current set of 

features, weights are assigned to each 

2. Feature whose absolute weight is the smallest is pruned 

from current set features

Until desired number of features is reached



Feature selection using feature importance

from sklearn.feature_selection import RFE

estimator = ExtraTreesClassifier(n_estimators=100, 

random_state=0)

# keep the 5 most informative features

# step corresponds to the (integer) number 

# of features to remove at each iteration

selector = RFE(estimator, n_features_to_select=5, step=1)

selector = selector.fit(X, y)

print(list(selector.support_))

print(list(selector.ranking_))

[True, False, False, False, False, False, True, False, 

False, True, False, True, True]

[1, 3, 8, 5, 6, 4, 1, 9, 7, 1, 2, 1, 1]

0                 6        9    11 12

Important features



Feature selection using predictive performance of ML model 

• Forward selection/Backward elimination are two repetitive methods of 

stepwise selecting important features:

– Use a predictive technique (any ML model) and a criterion (scoring) function to 

measure performance (effectiveness in making predictions):

• Classification problems: accuracy (% of correct predictions), f1, precision, recall

• Regression problems: R2, Mean Squared Error (MSE), Root Mean Squared Error (RMSE)

– Split dataset (train/test), train model on train data, make predictions on test 

data

– Select features that maximize / minimize the criterion function

– Termination point: reach desired number of features 

https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules


Feature selection using predictive performance of ML model

• Forward selection:

– Start with a null model (with no 

features)

– Add a feature that maximizes criterion 

function upon insertion

– Repeat procedure until termination 

criterion is satisfied



• Backward elimination:

– Start with all features in the model 

(full model)

– Remove a feature that has the 

minimum impact (maximizes criterion 

function) upon removal

– Repeat procedure until termination 

criterion is satisfied

Feature selection using predictive performance of ML model



Examples

• Example 1 – Forward Selection

– Use the wine dataset to choose the “best” 5 (out of 13) features

– Classification method: k-nearest neighbors

• Distance-based algorithm: achieves better results when input features are scaled

– Criterion (scoring) function: accuracy

– Initialize classifier

from sklearn.neighbors import KNeighborsClassifier 

knn = KNeighborsClassifier(n_neighbors=4)



Examples

– Initialize and fit Sequential Forward Selection model

• Can be used for both classification and regression problems
from mlxtend.feature_selection import SequentialFeatureSelector as SFS

sfs = SFS(knn,   # scikit-learn classifier

    k_features=5,  # termination point

    forward=True,  # forward selection

    floating=False,

    verbose=2,   # logging level (messages printed when running)

    scoring='accuracy', # criterion function

          n_jobs=-1,   # number of CPUs to use, -1 → all CPUs

    cv=10)   # 10-fold cross validation: resampling method 

that uses different portions of the data to test and train a model on different iterations. Here, we have 10 

iterations per feature selection round (more details in the next labs).

# perform feature selection & learn model from training data

sfs = sfs.fit(X_scaled, y)

# Results

# Features: 1/5 -- score: 0.7810457516339869 

# Features: 2/5 -- score: 0.9212418300653595

# Features: 3/5 -- score: 0.9493464052287581

# Features: 4/5 -- score: 0.9552287581699346 

# Features: 5/5 -- score: 0.9663398692810456

Install mlxtend library. Run 
conda install -c 

conda-forge mlxtend 

on Anaconda prompt prior 

running this example

mean scores (over 

10 iterations)

http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.feature_selection/#sequentialfeatureselector
https://github.com/rasbt/mlxtend


Examples

– We can access the indices of the 5 best features directly via the 
k_feature_idx_ attribute and the prediction score via k_score_

• Example 2 – Backward Elimination

print('\nSequential Forward Selection (k=5):')

print('Selected features:',sfs.k_feature_idx_) # (1, 4, 6, 9, 12) 

print('Prediction score:',sfs.k_score_)  # 0.9663398692810456

sbs = SFS(knn,   # scikit-learn classifier

    k_features=5,  # termination criterion

    forward=False,  # backward elimination

    floating=False,

    scoring='accuracy', # criterion function

    cv=10,   # 10-fold cross validation

    n_jobs=-1)

sbs = sbs.fit(X_scaled, y)

print('\nSequential Backward Selection (k=5):')

print('Selected features:',sbs.k_feature_idx_)# (0, 2, 8, 9, 12)

print('Prediction (CV) score:',sbs.k_score_)  # 0.9607843137254901



Examples

• Example 3 – Plotting the results

from mlxtend.plotting import 

plot_sequential_feature_selection as plot_sfs

import matplotlib.pyplot as plt

sfs = SFS(knn, 

    k_features=5,

    forward=True,

    floating=False,

    scoring='accuracy',

    verbose=2,

    cv=10,

          n_jobs=-1)

sfs = sfs.fit(X_scaled, y)

fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])

plt.title('Sequential Forward Selection (w. StdDev)')

plt.grid()

plt.show()



Examples

• Example 3 – Plotting the results
Features: 1/5 -- score: 0.7810457516339869 

Features: 2/5 -- score: 0.9212418300653595

Features: 3/5 -- score: 0.9493464052287581

Features: 4/5 -- score: 0.9552287581699346 

Features: 5/5 -- score: 0.9663398692810456



Examples

• Example 4 – Selecting the "best" feature combination in k-range

– Set k_features to a tuple (min_k, max_k)

– SFS selects the best feature combination of size min_k to max_k inclusive that 

scored best during cross validation

– In forward selection

• It also returns the best score achieved for every feature subset from 1 feature to max_k 

features, i.e. for k_features=(5,9) it returns the best score achieved for 1 feature, 2 

features, … up to 9 features

– In backward selection

• It also returns the best score achieved for every feature subset from all features down to 

min_k features, i.e. k_features=(5,9) the best score achieved for 13 features (for the wine 

dataset), 12 features, …, down to 5 features



Examples

• Example 4 – Selecting the "best" feature combination in k-range

X, y = wine_data()

knn = KNeighborsClassifier(n_neighbors=4)

sfs_range = SFS(estimator=knn, 

k_features=(2, 13),

           forward=True, 

           floating=False, 

           scoring='accuracy',

           cv=10,

           n_jobs=-1)

sfs_range = sfs_range.fit(X_scaled, y)

print('best combination (ACC: %.3f): %s\n' % (sfs_range.k_score_, 

sfs_range.k_feature_idx_))

print('all subsets:\n', sfs_range.subsets_)

plot_sfs(sfs_range.get_metric_dict(), kind='std_err');



• Example 4 – Selecting the "best" feature combination in k-range

Examples

best combination (ACC: 0.972): (1, 4, 6, 9, 10, 11, 12)

X_scaled_selected = sfs_range.transform(X_scaled) # extract selected columns



SFS with regression problems

• Use appropriate estimator (regressor) and scoring function (e.g. R2, 

RMSE etc.)

rf = RandomForestRegressor()

sfs_range = SFS(estimator=rf, 

           k_features=(2, 13),

           forward=True, 

           floating=False, 

           scoring='r2', # or 'neg_root_mean_squared_error'

           cv=10,

           n_jobs=-1)

sfs_range = sfs_range.fit(X, y) # no need for scaled features in tree-based models

print('best combination (R2: %.3f): %s\n' % (sfs_range.k_score_, 

sfs_range.k_feature_idx_))

print('all subsets:\n', sfs_range.subsets_)

plot_sfs(sfs_range.get_metric_dict(), kind='std_err');



Feature extraction

• Build a new set of features from the original feature set

• Differs from feature selection in two ways:

– Instead of choosing subset of features

– Create new feature set (dimensions)



Feature extraction

• Idea:

– Given data points in d-dimensional space, 

– Project into lower k-dimensional space (k<d) while preserving as much 

information as possible

– In particular, choose projection that minimizes the squared error in 

reconstructing original data

• Methods:

– Principal Component Analysis (PCA)
• http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

– Singular Vector Decomposition (SVD)
• https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html 

• http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html

– Linear Discriminant Analysis (LDA)
• http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html


• PCA tries to identify a set of new directions (new features) called 

principal components that account for the most variance (information)

• Principal components (new directions/features) are the linear 

combinations of the old directions (old features)

PCA

Excellent explanation about PCA: http://stats.stackexchange.com/questions/2691/making-sense-

of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

The eigenvectors and eigenvalues of a covariance 

(or correlation) matrix represent the “core” of a PCA: 

The eigenvectors (principal components) determine 

the directions of the new feature space, and the 

eigenvalues determine their magnitude. In other 

words, the eigenvalues explain the variance of the 

data along the new feature axes.

http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579
http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579


PCA Example

• Dataset: 2-D observations

– blue dots

• Find the best one dimension that 

converts dataset to 1-D observations

• Best dimension:

• Line that points to the magenta ticks

• Red dots are projections of the blue dots

• Projection position is the new value of the (1-D) observation on the new dimension

• Maximizes variance (spread of red dots)

• Increased differentiation among new 1-D observations

• Minimizes reconstruction error (red line)

• Error = |position of blue dot – projection position of blue dot|



PCA considerations

• PCA assumes that the data to be transformed is linearly separable 
and works well only when the relationship between features is linear

• Does not take into account non-normalities of the data, such as skewness or 
discreteness (thus PCA is inappropriate for discrete numerical values) → use 
unskewing techniques on skewed features prior PCA (Lab4)

• PCA is sensitive to the scale of the features

• variance of features with larger scales will dominate the principal components 
unless the data is standardized → use standard scaler prior PCA (Lab 4)

• PCA requires that the data (features) is mean-centered (mean=0)

• for a single feature, this is done by subtracting the mean of that feature from 
each data point → done by PCA in advance for all features

• PCA helps when the features in your dataset are correlated and you 
want to remove the redundancy in the data by transforming it into 
uncorrelated principal components



• Is there a rule of thumb for finding the “best” number of PCA 

components (features)?

• A useful measure is to pick the k features that explain a high 

percentage of the total data variance

– can be done by plotting the explained variance ratio rk as a function of k

PCA

Example:

Perform PCA on the SCALED wine 

dataset with 13 features to extract 10 

new features (10 principal 

components)

Some observations:

• First 3 new features explain 

together 62% of the total variance

• Each of the last 3 new features 

explain around 2% of the total 

variance (can be omitted)



• SVD is a generic way of breaking down a big matrix (dataset with 

features) into 3 smaller, more useful pieces

• SVD breaks a matrix (A) into three matrices: A=UΣVT

• Matrices U and V contain information about the "directions" or “features" of 

the original dataset – U contains info about rows, V info about columns

• Σ (Sigma) is diagonal matrix with singular values. These are like "weights" 

that tell us how important certain directions (in U and V) are.

• So if your original matrix (dataset) is too big and complicated, you 

can use just the most important singular values (the biggest ones in 

Σ) and their corresponding vectors from U and V

• This helps you simplify the data while keeping most of its essential 

information.

SVD



SVD considerations

• SVD is a generic way of decomposing a matrix for purposes like 

dimensionality reduction, latent semantic analysis (LSA*) in text 

processing without necessarily focusing on variance

• It works well with sparse matrices, where many of the entries are 

zero (e.g., document-term frequency matrices in text processing)

• SVD does not require data to be mean-centered

(*) LSA uses SVD to uncover hidden structures in text data by reducing the dimensionality of the document-term matrix 

and finding relationships between terms and documents that may not be immediately apparent from the raw data



Supervised vs Unsupervised

• SVD and PCA are unsupervised methods

– Both ignore the target variable (e.g. class labels)

• LDA is a supervised method

– Takes into account class labels (target variable), suitable for classification 

problems

– identifies new (directions) features that best separate two or more classes

– Note: the maximum number of new features = number of classes – 1

• Example: if the dataset contains observations belonging to 3 classes (i.e. 3 unique 

values in the target variable) the maximum number of new features can be 2.



Python-implemented algorithms

• Scikit-learn PCA (centers data, does not support sparse matrices)

• SCiPy SVD (works for sparse matrices with many zeros)

• Scikit-learn TruncatedSVD: (works for large sparse matrices 

efficiently without making memory explode)



Feature Extraction in Python

• Dataset: Iris dataset 
– 150 flower observations

– 4 features

• sepal length, sepal width, petal length, petal width

– class variable

• 0 (setosa), 1 (versicolor), 2 (virginica)

• Perform dimensionality reduction using TruncatedSVD, PCA and 

LDA 

– 4 to 2 features



Results – TruncatedSVD

TruncatedSVD explained 

variance ratio (first two 

components): 

[0.52875361 0.44845576]



Results – PCA

PCA explained variance 

ratio (first two 

components): 

[0.92461872 0.05306648]



Results – LDA

LDA explained variance 

ratio (first two 

components): 

[0.9912126 0.0087874]



Importance evaluation in estimators
• There are several ways to get feature "importances". As often, there is no strict consensus about 

what this word means.

• In scikit-learn, the importance is implemented as described in [1] (often cited, but unfortunately 

rarely read...). It is sometimes called "gini importance" or "mean decrease impurity" and is 

defined as the total decrease in node impurity (weighted by the probability of reaching that node 

(which is approximated by the proportion of samples reaching that node)) averaged over all 

trees of the ensemble.

• In the literature or in some other packages, you can also find feature importances implemented 

as the "mean decrease accuracy". Basically, the idea is to measure the decrease in accuracy on 

OOB data when you randomly permute the values for that feature. If the decrease is low, then 

the feature is not important, and vice-versa.

• [1]: Breiman, Friedman, "Classification and regression trees", 1984.
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