EPL448: Data Mining
on the Web — Lab 7 |uniesiyercyems

Computer Science

[TaUuAoc¢ AvTwviou
[‘pageio: B109, ©OEEO1

Feature selection & Feature extraction

« Used to eliminate the number of features (columns) leading to:
— Less computation time when training predictive modelling algorithms
— Noise reduction by discarding irrelevant or redundant features
— Easier to understand (interpretable) feature set, easier to visualize dataset

« Useful In datasets with large number of features that may not all
contribute meaningfully to the prediction task.

« Feature selection: Select a subset of the original feature set

« Feature extraction: Build a new set of
features from the original feature set

— Dimensionality Reduction techniques: used for
mapping observations in high-dimensional (high
number of features) space to lower number of
dimensions (features) while preserving structure,
e.g pairwise distances, between observations

| wesee NI
Feature selection sonposca [IIEDOXIEROO< X

. Select a subset of the original feature set =~~~ “HE

— Feature selection using statistical techniques: select features based on their
statistical properties or statistical relationship with target variable (e.g.,
correlation, variance, chi-squared test)

fast but not accurate methods

— Feature selection using feature importance: ensemble predictive modelling
techniques (e.g., decision trees, random forest, gradient boosting) evaluate
features importance during their training process

moderate speed and better accuracy

— Feature selection using the predictive performance of model: iteratively select
a subset of “important” features based on which the model is trained to
achieve the highest predictive performance (e.g., forward/backward selection)

slow (computationally expensive) but accurate methods

Feature selection using correlation

« pandas corr() method to compute pairwise correlation between all
dataset columns

— avallable correlation methods: pearson, kendall, spearman

Wine dataset: 178 wine observations by 13 features. Wines classified into 3

types ° Wine Alcohol Malic_acid Ash Acl Mg Phenols Flavanoids MNonflavanoid phenols Proanth Color intensity Hue

0D Proline

0 14.23 171 243 156 127 2380 3.06 0.28 2.29 564 104 292 1065

df = pd.read csv('wine.csv') 1 12.20 178 214 112 100 2.65 276 0.26 128 438 105 340 1050
N - 2 12.16 236 267 186 101 2.30 2.24 0.20 2.81 568 103 217 1185
- 3 1437 195 250 168 113 2.85 3.49 0.24 2.18 780 086 245 1480

» 4 12.24 259 287 210 118 280 269 0.39 122 432 104 293 735

173 13T 565 245 205 05 1.68 051 0.52 1.06 770 064 174 740

174 3 1340 391 248 230 102 1.80 0.75 0.43 141 730 070 156 750

175 3 1327 428 226 200 120 1.59 0,59 0.43 135 1020 059 156 835

176 3 1347 259 237 200 120 1.65 0.68 0.53 146 930 060 162 840

177 3 1413 410 274 245 9 205 0.76 0.56 135 920 081 180 560

fig, ax = plt.subplots(figsize = (12 , 10))
sns.heatmap (df.corr (method="pearson'), annot = True)

http://rasbt.github.io/mlxtend/user_guide/data/wine_data/
https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB07/wine.csv

Feature selection using correlation

V.
>

Target variable —— vine-

Alcohol

Malic_acid

SRCE]

0.44

Ash &

Acl

Mg B

Phenols el

Flavanoids JEEK:]

Nonflavanoid_phenols

Proanth

Color_intensity

Hue —J&

oD guil

Proline RNk}

Wine

0.33 | 044 -0.05 BES2s 0.2

0.094 0.21 -0.31 .
0.094 0.16 0.29
0.21 0.16 0.44
0.3

0.29 0.44 -IZ).[JEE3 -0.3:

-0.055

-1.00

62 -0.072 -0.56

79 1 0.072

0.12 0.3

0.19 0:36 | -0.26

-0.22 0.0097 -0.2

0:554 0.25 0.26

0.019

-0.075 -0.27

-0.37 0.0039 -0.28

-0.19 | 0.22 -0.44

Alcohol -
Malic_acid
Ash
Acl

0.29 -IZ).DEES W.
3 -0.3:

75
Observations:
013 00057 026 0075 0.0039 02 « Features Phenoids,
| Flavanoids, Hue, OD,
.. ... Proline are highly
negatively correlated to the
E target value (Wine) ; see
o sl o7 [000 the first line of the heat map
" * Features Phenols &
N e TR | Flavanoids are highly
e "”":’25"”‘52 - (positively) correlated to
= each other. One of them
00ss REIRELY o> BORR .3 could be removed if the
075 dataset had a large number

Mg
Phenols
Flavanoids
Proanth

¥

Color_intensit

Nonflavanoid_phenols

of features. This is not the
case so we can keep them.

Feature selection using variance

* Quick and lightweight way of eliminating features with very low
variance, I. e. features with not much useful information
— Variance shows how spread out the feature distribution is (the average
squared distance from the mean)

import numpy as np
np.std([2, 2, 2, 2, 2, 2, 2, 2]) # 0.0
— If a feature has 0O variance it is completely useless. Using a feature with zero

variance only adds to model complexity, not to its predictive power.

np.std([5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6]) # 0.28747978728803447

— Features that go around a single constant are also useless. In other words,
any feature with close to O variance should be dropped.

Feature selection using variance

« Scikit-learn provides VarianceThreshold estimator that accepts a threshold
cut-off and removes all features with variance below that threshold

X = df.drop(columns=['Wine']) # features dataframe
y = df['Wine'] # target dataframe
X.describe ()

Alcohol Malic_acid Ash Acl Mg Phenols Flavanoids Monflavanoid_phenols Proanth Color_intensity Hue oD Proline
count 178000000 178000000 178000000 178.000000 173.000000 178.000000 178.000000 178.000000 178.000000 172.000000 173.000000 178.000000 173.000000
mean 13.000613 2.336343 2366517 19.494944 99741573 2.295112 2029270 0361354 1.590399 5.053090 0.957449 2611685 746.853253

st 0.511827 1117146 0.274344 3.339564 14.282454 0.625851 0.993859 0124453 0.572359 2.313286 0.228572 0.709990 314907474
min 11.030000 0.740000 1.260000 10.600000 70.000000 0.920000 0.240000 0.120000 0.410000 1.280000 0.420000 1.270000 273.000000
25% 12.362500 1.602500 2210000 17.200000 22.000000 1.742500 1.205000 0.270000 1.250000 3.220000 0.732500 1.937500 500.500000
50% 13.050000 1.865000 2.360000 19500000 93.000000 2.355000 2135000 0.240000 1.555000 4.690000 0.965000 2.780000 &73.500000
75% 13.677500 3.082500 2.557500 21.500000 107.000000 2800000 2875000 0437500 1.250000 6.200000 1.120000 3.170000 985.000000
max 14.530000 5.800000 3.230000 30.000000 162.000000 3.880000 5.080000 0.660000 3.580000 13.000000 1.710000 4.000000 15630.000000

— Often, it is not fair to compare the variance of a feature to another. The reason
IS that as the values in the distribution get bigger, the variance grows
exponentially. In other words, the variances will not be on the same scale.

Feature selection using variance

« Scikit-learn provides VarianceThreshold estimator that accepts a threshold
cut-off and removes all features with variance below that threshold

X = df.drop(columns=['Wine']) # features dataframe
y = df['Wine'] # target dataframe
X.describe ()

Alcohol Malic_acid Ash Acl Mg Phenols Flavanoids Monflavanoid_phenols Proanth Color_intensity Hue oD Proline
count 178000000 178000000 178000000 178.000000 173.000000 178.000000 178.000000 178.000000 178.000000 172.000000 173.000000 178.000000 173.000000
mean 13.000613 2.336343 2366517 19.494944 99741573 2.295112 2029270 0.361354 1.590399 5.053090 0.957449 2611685 746.853253

st 0.511827 1.117146 0.2743 o - 286 0.228572 0.7099590 314.907474

4 1he above features all have different medians, quartiles,

min 11.030000 0. 740000 1.36 i . i . 1000 04230000 1.270000 278.000000
and ranges — completely different distributions. We cannot

28% 12.382500 1.602500 2.2108 00 0782500 1.937500 500.500000
compare these features to each other.

50% 13.050000 1.865000 23800 e B 00 0.965000 2780000 &73.500000

78% 13.677500 3.082500 2.557500 21.500000 107000000 2800000 2875000 0437500 1.950000 6.200000 1.120000 3170000 985.000000

max 14.530000 5.200000 3.230000 30.000000 162.000000 3.880000 5.080000 0.660000 2.5280000 13.000000 1.710000 4.000000 1680.000000

— Often, it is not fair to compare the variance of a feature to another. The reason
IS that as the values in the distribution get bigger, the variance grows
exponentially. In other words, the variances will not be on the same scale.

Feature selection using variance

« One method we can use to scale all features Is the Robust Scaler
(see previous lab) which is not highly affected by outliers:

Alcohol @.381132

from sklearn.preprocessing import RobustScaler Malic_acid 5.565766
transformer = RobustScaler () .fit (X) ﬁ? fiiﬁi
scaled data = transformer.transform (X) X scay e 5 565057
X scaled = pd.DataFrame (scaled data, columns=X.columns) () ffmh_ Ejﬁﬁz

- - Flavanolds @.3577
. . Varianc\ Nonflavanoid_phenols @.552056
* We use the VarianceThreshold with s s @eonne o 7 s
. tran e.after :ew—l T ;:;S:EEG
a threshold 0.35 on the X scaled: Sformatiop, o
Proline @.422453

from sklearn.feature selection import VarianceThreshold dtype: floatéd

selector = VarianceThreshold(threshold=0.35)

Learn variances from X scaled

= selector.fit (X scaled)

Get a mask (or integer index if indices=True is set) of the features selected
mask = selector.get support ()

print (mask) ﬂ

[True True True True True False True True True True True False True]

False if the corresponding feature is selected to be dropped: Phenols and OD have variance <= 0.35

Feature selection using feature importance

* A set of predictive technigues (ensemble methods) can be used to
assign scores to input features as part of the training phase. Each
score indicates the relative importance of each feature when making

a prediction

— Ensemble methods is a machine learning technique that combines several
base models in order to produce one optimal predictive model (see more

here)

« Feature importance scores can be calcu
Involve predicting a numerical value, cal
problems that involve predicting a class
(studied thoroughly in Labs 8-9)

ated both for problems that
ed regression, and those

abel, called classification

https://scikit-learn.org/stable/modules/ensemble.html

Feature selection using feature importance

* The scores are useful and can be used in a range of situations in a
predictive modeling problem, such as:

 Better understanding the data (which feature(s) are important, i.e. influencing
the decision-making process)

* Reducing the number of input features (choosing the most important features
of the dataset for training)

Feature selection using feature importance

« Get feature importance by training an ensemble predictive
technique (ensemble classifiers/reqressors)
— Fit (train) predictive techniqgue on the whole set of features
— Weights are assigned to each feature

Feature Importance using ExtraTreeClassifier
from sklearn.ensemble import ExtraTreesClassifier

Build an estimator (forest of trees) and compute the feature importances
estimator = ExtraTreesClassifier (n estimators=100, max features= 13, random state=0)

estimator.fit (X, vy)

Lets get the feature importances.
Features with high importance score higher.
importances = estimator.feature importances

http://scikit-learn.org/stable/modules/ensemble.html#forest

Feature selection using feature importance

Feature importances

0.4 - Feature ranking:

1. feature 12 - Proline (0.240954)

2. feature 11 - OD (0.162438)
03 - 3. feature 6 - Flavanoids (0.149339)

4., feature 0 - Alcohol (0.127384)

5. feature 9 - Color intensity (0.125520)
0.7 - 6. feature 10 - Hue (0.072550)

7. feature 5 - Phenols (0.031640)

8. feature 1 - Malic acid (0.027186)
0.1 - 9. feature 4 - Mg (0.021927)

10. feature 3 - Acl (0.013679)

11. feature 8 - Proanth (0.012320)
00 - | *ﬁ.l..h_,_ 12. feature 2 - Ash (0.010575)

13. feature 7 - Nonflavanoid phenols

T T T T T T T T T T T (0.004489)

Note: It is recommended to evaluate various classifiers or regressors
belonging to the sklearn.ensemble module. You may have to play with their
input parameters for better understanding of the behavior of each model.

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

Feature selection using feature importance

* Instead of training an ensemble method only once, we can run the
training process multiple times.

* Recursive Feature Elimination (RFE) aims at selecting features by
recursively eliminating the worst feature(s) — having lowest
Importance — at every iteration.

Current set of features = all features
Repeat

1. Predictive ensemble technique trained on current set of
features, weilights are assigned to each

2. Feature whose absolute weight 1s the smallest 1s pruned
from current set features

‘Until desired number of features 1s reached

Feature selection using feature importance

from sklearn.feature selection import RFE

estimator = ExtraTreesClassifier(n estimators=100,

random state=0)

keep the 5 most informative features

step corresponds to the (integer) number

of features to remove at each iteration

selector = RFE(estimator, n features to select=5, step=1)
selector = selector.fit (X, vy)

print (list (selector.support))

print (list (selector.ranking))

2

[True, False, False, False, False, False, True, False,
False, True, False, True, True]
[ll 3/ 8’ 5’ 6/ 4’ ll 9/ 7/ 1’ 2’ 1/ 1]

(6 9 11D

Important features

Feature selection using predictive performance of ML model

« Forward selection/Backward elimination are two repetitive methods of

stepwise selecting important features:
— Use a predictive techniqgue (any ML model) and a criterion (scoring) function to
measure performance (effectiveness in making predictions):

Classification problems: accuracy (% of correct predictions), f1, precision, recall
Regression problems: R2, Mean Squared Error (MSE), Root Mean Squared Error (RMSE)

— Split dataset (train/test), train model on train data, make predictions on test
data

— Select features that maximize / minimize the criterion function
— Termination point: reach desired number of features

https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules

Feature selection using predictive performance of ML model

° FOrward Selection: Forward stepwise selection example with 5 variables:

Start with a model with no variables

— Start with a null model (with no Null Model

features) [[BEE]]

— Add a feature that maximizes criterion

function upon insertion Add the most significant variable
: : : e
— Repeat procedure until termination < Model with 1 variable
L] L] L] L] L] r '\
criterion is satisfied 1T]]

Keep adding the most significant variable until reaching
the stopping rule or running out of variables

Model with 2 variables

@a 1)

Feature selection using predictive performance of ML model

o BaCkward e“mina’[ion: B.’:ckw.ahrd sZelphwise s-ele:lct;]ion example with 5 variables:
— Start with all features in the model e

(full model) O.

— Remove a feature that has the
minimum impact (maximizes criterion Remove the least sgnificant variable
function) upon removal Model with 4 variables

— Repeat procedure until termination |[:]

criterion Is satisfied

Keep removing the least significant variable until
reaching the stopping rule or running out of variables

v

Model with 3 variables

LT
N)

Examples

« Example 1 — Forward Selection
— Use the wine dataset to choose the “best” 5 (out of 13) features

— Classification method: k-nearest neighbors
Distance-based algorithm: achieves better results when input features are scaled

— Criterion (scoring) function: accuracy
— Initialize classifier

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier (n neighbors=4)

Examples

Install mixtend library. Run
conda install -c

conda-forge mlxtend

— Initialize and fit Sequential Forward Selection model

on Anaconda prompt prior

running this example

Can be used for both classification and regression problems
from mlxtend.feature selection import SequentilialFeatureSelector as SFS

sfs = SFS (knn,
k features=5,
forward=True,
floating=False,
verbose=2,
scoring='accuracy',
n_jobs=-1,
cv=10)

that uses different portions of the data to test and train a model on different iterations. Here, we have 10
iterations per feature selection round (more details in the next labs).

perform feature selection & learn model from training data

sfs = sfs.fit (X scaled, vy)

i

H= H=

H= H= FH

#

scikit-learn classifier
termination point
forward selection

logging level (messages printed when running)
criterion function
number of CPUs to use, -1 = all CPUs
10-fold cross validation: resampling method

Results

Features: 1/5 -- score: 0.7810457516339869 mean scores (over
Features: 2/5 -- score: 0.9212418300653595 [10 iterations)

Features: 3/5 —-- score: 0.9493464052287581

Features: 4/5 —-- score: 0.9552287581699346

Features: 5/5 —-- score: 0.9663398692810456

http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.feature_selection/#sequentialfeatureselector
https://github.com/rasbt/mlxtend

Examples

— We can access the indices of the 5 best features directly via the
k feature idx attribute and the prediction score via k score
print ('\nSequential Forward Selection (k=5):")

print ('Selected features:',sfs.k feature idx) #
print ('Prediction score:',sfs.k score) #

(1, 4, o6, 9, 12)
0.9663398692810456

 Example 2 — Backward Elimination

sbs = SFS (knn, # scikit-learn classifier
k features=5, # termination criterion
forward=False, # backward elimination
floating=False,
scoring="'accuracy', # criterion function
cv=10, # 10-fold cross validation
n jobs=-1)

sbs = sbs.fit (X scaled, vy)

print ('\nSequential Backward Selection (k=5):")
print ('Selected features:',6 sbs.k feature idx)#
print ('Prediction (CV) score:',sbs.k score) #

0

(2, 8, 9, 12)
0.

9607843137254901

Examples

 Example 3 — Plotting the results

from mlxtend.plotting import
plot sequential feature selection as plot sfs
import matplotlib.pyplot as plt
sfs = SFS (knn,
k features=5,
forward=True,
floating=False,
scoring='accuracy',
verbose=2,
cv=10,
n jobs=-1)

sfs = sfs.fit (X scaled, vy)

figl = plot sfs(sfs.get metric dict (), kind='std dev')
plt.ylim([0.8, 17)

plt.title('Sequential Forward Selection (w. StdDev) ')
plt.grid()

plt.show()

Examples

 Example 3 — Plotting the results

Features: 1/5 score: 0.7810457516339869
Features: 2/5 score: 0.9212418300653595
Features: 3/5 score: 0.9493464052287581
Features: 4/5 score: 0.9552287581699346
Features: 5/5 score: 0.9663398692810456
Loo Sequential Forward Selection (w. StdDev)
0.95 - * =
0.90
%DEE-
E
£ 0.80 -
o
0.75 -
0.70 -
0.65 +— . | .
1 3 4 g

NMumber of Features

Examples

« Example 4 — Selecting the "best" feature combination in k-range
— Set k features to a tuple (min_k, max_Kk)

— SFS selects the best feature combination of size min_k to max_k inclusive that
scored best during cross validation

— In forward selection

It also returns the best score achieved for every feature subset from 1 feature to max_k
features, I.e. for k_features=(5,9) it returns the best score achieved for 1 feature, 2
features, ... up to 9 features

— In backward selection

It also returns the best score achieved for every feature subset from all features down to
min_Kk features, i.e. k_features=(5,9) the best score achieved for 13 features (for the wine
dataset), 12 features, ..., down to 5 features

Examples

« Example 4 — Selecting the "best" feature combination in k-range

X, y = wine data()

knn = KNeighborsClassifier (n neighbors=4)
sfs range = SFS(estimator=knn,
k features=(2, 13),
forward=True,
floating=False,
scoring="'accuracy',

cv=10,
n jobs=-1)
sfs range = sfs range.fit (X scaled, vy)
print ('best combination (ACC: %.3f): %$s\n' % (sfs range.k score ,

sfs range.k feature 1idx))
print ('all subsets:\n', sfs range.subsets)
plot sfs(sfs range.get metric dict (), kind='std err');

Examples

« Example 4 — Selecting the "best" feature combination in k-range

0.95 -

0.90 -

0.85 -

Performance

0.80 -

0.75 -

1 2 3 4/ 5 6 (7 9 10 11 12 13
NMumber of Featu
best combination (ACC: 0.972): (1, 4, o, 9, 10, 11, 12)

X scaled selected = sfs range.transform(X scaled) # extract selected columns

SFS with regression problems

« Use appropriate estimator (regressor) and scoring function (e.g. R2,
RMSE etc.)

rf = RandomForestRegressor ()

sfs range = SFS(estimator=rf,
k features=(2, 13),
forward=True,
floating=False,

scoring='r2', # or 'neg root mean squared error'
cv=10,
n_ jobs=-1)
sfs range = sfs range.fit (X, y) # no need for scaled features in tree-based models

o\©

print ('best combination (R2: .3f): %$s\n' % (sfs range.k score ,
sfs range.k feature idx))
print ('all subsets:\n', sfs range.subsets)

plot sfs(sfs range.get metric dict (), kind='std err');

Feature extraction

* Build a new set of features from the original feature set

* Differs from feature selection in two ways:
— Instead of choosing subset of features
— Create new feature set (dimensions)

Feature extraction

* |ldea:
— Given data points in d-dimensional space,

— Project into lower k-dimensional space (k<d) while preserving as much
iInformation as possible

— In particular, choose projection that minimizes the squared error in
reconstructing original data

* Methods:
— Principal Component Analysis (PCA)

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

— Singular Vector Decomposition (SVD)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html
http://scikit-learn.orqg/stable/modules/generated/sklearn.decomposition. Truncated SVD.html

— Linear Discriminant Analysis (LDA)

http://scikit-learn.org/stable/modules/generated/sklearn.discriminant _analysis.LinearDiscriminantAnalysis.html

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

PCA

« PCA tries to identify a set of new directions (new features) called
orincipal components that account for the most variance (information)

* Principal components (new directions/features) are the linear
combinations of the old directions (old features)

The eigenvectors and eigenvalues of a covariance
(or correlation) matrix represent the “core” of a PCA:
The eigenvectors (principal components) determine
the directions of the new feature space, and the
eigenvalues determine their magnitude. In other
words, the eigenvalues explain the variance of the
data along the new feature axes.

Excellent explanation about PCA: http://stats.stackexchange.com/questions/2691/making-sense-
of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579
http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

PCA Example

 Dataset: 2-D observations
— blue dots

* Find the best one dimension that e
converts dataset to 1-D observations A o

. Best dimension: / 3-

* Line that points to the magenta ticks

Red dots are projections of the blue dots
Projection position is the new value of the (1-D) observation on the new dimension

« Maximizes variance (spread of red dots)
Increased differentiation among new 1-D observations

« Minimizes reconstruction error (red line)
Error = |position of blue dot — projection position of blue dot|

PCA considerations

PCA assumes that the data to be transformed is linearly separable
and works well only when the relationship between features is linear

» Does not take into account non-normalities of the data, such as skewness or
discreteness (thus PCA is inappropriate for discrete numerical values) - use
unskewing technigues on skewed features prior PCA (Lab4)

PCA iIs sensitive to the scale of the features

* variance of features with larger scales will dominate the principal components

unless the data is standardized - use standard scaler prior PCA (Lab 4)
PCA requires that the data (features) is mean-centered (mean=0)

* for a single feature, this is done by subtracting the mean of that feature from

each data point = done by PCA in advance for all features
PCA helps when the features in your dataset are correlated and you
want to remove the redundancy in the data by transforming it into
uncorrelated principal components

PCA

* |s there a rule of thumb for finding the “best” number of PCA
components (features)?

* A useful measure is to pick the k features that explain a high
percentage of the total data variance
— can be done by plotting the explained variance ratio r, as a function of k

Explained variance ratio

1.0+

0.8

0.6

0.4

0.2

0.0

Al_lﬁ

—— cumulative explained variance

individual explained variance

32.85%

19.68%

12.68%
5]
7.79% g.97% 5.61% 4.81%

T
)]

2.54% 2.09% 1.75%
T T T T T T T T T
1 2 3 4 5 6 7 8 9
Principal components

Example:

Perform PCA on the SCALED wine
dataset with 13 features to extract 10
new features (10 principal
components)

Some observations:

« First 3 new features explain
together 62% of the total variance

« Each of the last 3 new features
explain around 2% of the total
variance (can be omitted)

SVD

« SVD is a generic way of breaking down a big matrix (dataset with
features) into 3 smaller, more useful pieces

« SVD breaks a matrix (A) into three matrices: A=UZVT

» Matrices U and V contain information about the "directions" or “features" of
the original dataset — U contains info about rows, V info about columns

« 2 (Sigma) is diagonal matrix with singular values. These are like "weights”
that tell us how important certain directions (in U and V) are.
« So If your original matrix (dataset) is too big and complicated, you
can use just the most important singular values (the biggest ones In
2) and their corresponding vectors from U and V

* This helps you simplify the data while keeping most of its essential
iInformation.

SVD considerations

« SVD is a generic way of decomposing a matrix for purposes like
dimensionality reduction, latent semantic analysis (LSA*) in text
processing without necessarily focusing on variance

* It works well with sparse matrices, where many of the entries are
zero (e.g., document-term frequency matrices in text processing)

« SVD does not require data to be mean-centered

(*) LSA uses SVD to uncover hidden structures in text data by reducing the dimensionality of the document-term matrix
and finding relationships between terms and documents that may not be immediately apparent from the raw data

Supervised vs Unsupervised

« SVD and PCA are unsupervised methods
— Both ignore the target variable (e.g. class labels)

« LDA Is a supervised method

— Takes into account class labels (target variable), suitable for classification
problems

— Identifies new (directions) features that best separate two or more classes

— Note: the maximum number of new features = number of classes — 1

Example: if the dataset contains observations belonging to 3 classes (i.e. 3 unique
values in the target variable) the maximum number of new features can be 2.

Python-implemented algorithms

« Scikit-learn PCA (centers data, does not support sparse matrices)
« SCIiPy SVD (works for sparse matrices with many zeros)

« Scikit-learn TruncatedSVD: (works for large sparse matrices
efficiently without making memory explode)

Feature Extraction in Python

« Dataset: Iris dataset
— 150 flower observations

— 4 features
sepal length, sepal width, petal length, petal width

— class variable
O (setosa), 1 (versicolor), 2 (virginica)

« Perform dimensionality reduction using TruncatedSVD, PCA and
LDA

— 4 to 2 features

Results — TruncatedSVD

Truncated SVD, 2 components

37 target
0
e 1
2 1 o 2
l_
=
g
2
[15] » LI
E 0] ™ ., " " i. L
. e g e e,
.- :.L.....l . ..
© e S
-1 . (] ® o0 * .
™
3..‘ - 'i:i.a.. ‘ ... L]
o
*
_2— .
T
5 3] 7 8 9 10 11

Feature 0

TruncatedSVD explained
variance ratio (first two
components) :

[0.52875361 0.44845576]

Results — PCA

Feature 1

PCA, 2 components

15
L]
L]
1.0 -
L
]
L] L]
0.5 - .
.J » i....... .
[£
o Qe
0.0 - '.: ‘e o®
L L
L .-. ~ Hj ..‘.'
e P 8o o
—0.5 - N I b
® %o, ¢ . target
° 0
—1.0 > o 1
a ® e 72
B T I R
Feature 0
PCA explained variance
ratio (first two

components) :
[0.92461872 0.05306648]

Results — LDA

Feature 1

LDA, 2 components

3
]
.
]
2 * e
So o
M .
s ®
™ L]
1 4 []
® woa ™
LI . 2 .
® L]
® @
™
07 o *J e .:‘ ®
LT L]
[] o 'i\]“
2] . &
14 e o %o ot
L
L] L]] ®
®
target e ® =..
—2 0 o »
o 1 o
e 2 .
T T T T T T T T T
=100 -=7.5 =5.0 —2.5 0.0 2.5 5.0 7.5 10.0
Feature 0

LDA explained wvariance
ratio (first two
components) :
[0.9912126 0.0087874]

Importance evaluation in estimators

There are several ways to get feature "Importances". As often, there is no strict consensus about
what this word means.

In scikit-learn, the importance is implemented as described in [1] (often cited, but unfortunately
rarely read...). It is sometimes called "gini importance" or "mean decrease impurity" and is
defined as the total decrease in node impurity (weighted by the probability of reaching that node
(which is approximated by the proportion of samples reaching that node)) averaged over all
trees of the ensemble.

In the literature or in some other packages, you can also find feature importances implemented
as the "mean decrease accuracy". Basically, the idea is to measure the decrease in accuracy on
OOB data when you randomly permute the values for that feature. If the decrease is low, then
the feature is not important, and vice-versa.

[1]: Breiman, Friedman, "Classification and regression trees", 1984.

	Slide 1: EPL448: Data Mining on the Web – Lab 7
	Slide 2: Feature selection & Feature extraction
	Slide 3: Feature selection
	Slide 4: Feature selection using correlation
	Slide 5: Feature selection using correlation
	Slide 6: Feature selection using variance
	Slide 7: Feature selection using variance
	Slide 8: Feature selection using variance
	Slide 9: Feature selection using variance
	Slide 10: Feature selection using feature importance
	Slide 11: Feature selection using feature importance
	Slide 12: Feature selection using feature importance
	Slide 13: Feature selection using feature importance
	Slide 14: Feature selection using feature importance
	Slide 15: Feature selection using feature importance
	Slide 16: Feature selection using predictive performance of ML model
	Slide 17: Feature selection using predictive performance of ML model
	Slide 18: Feature selection using predictive performance of ML model
	Slide 19: Examples
	Slide 20: Examples
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Examples
	Slide 24: Examples
	Slide 25: Examples
	Slide 26: Examples
	Slide 27: SFS with regression problems
	Slide 28: Feature extraction
	Slide 29: Feature extraction
	Slide 30: PCA
	Slide 31: PCA Example
	Slide 32: PCA considerations
	Slide 33: PCA
	Slide 34: SVD
	Slide 35: SVD considerations
	Slide 36: Supervised vs Unsupervised
	Slide 38: Python-implemented algorithms
	Slide 39: Feature Extraction in Python
	Slide 40: Results – TruncatedSVD
	Slide 41: Results – PCA
	Slide 42: Results – LDA
	Slide 43: Importance evaluation in estimators

