EPL448: Data Mining
on the Web — Labs 8 |uysior

Computer Science

[TaUuAoc¢ AvTwviou
[‘pageio: B109, ©OEEO1

Predictive modeling techniques

* Predictive modeling technigues help translate raw data into value

— Machine learning predictive techniques such as Support Vector Machines
(SVMs), Decision trees, boosting methods, learn from data and build models

- Data + Predictive Modeling Technique = Predictive Model
— 3 phases to prepare a predictive model: Training — Validation — Test

« Split initial dataset into 3 smaller datasets

— Training dataset: The actual dataset used to train the model. The model
sees and learns from this data.

— Validation dataset: Used to provide unbiased evaluation of model fit on
testing dataset and fine-tune the model hyperparameters*. The model
occasionally sees this data, but never “learns” from this.

— Test dataset: Used to provide unbiased evaluation of a final model. Only

used once a model is completely trained (using training & validation datasets)
* Cannot be learned from data, during the training process.

V5.
Syl
..
S

Training / validation / test datasets
A y index - -

index ~ [features farget
Sam. Rooms Parking Price train split
o Predictive model
1
2
X
3 . %\‘bge
4 I\
5) N :
6 \\0‘\' validation split v
@ Predictey
7 N\
8 r ¢
9 test split ~ Cdictey

During testing phase, predictive modelling technique sees both features (X _train) and the target (y_train) values
During validation and testing phases, only features (X val, X_test respectively) are given as input to predictive
technique so as to predict the target values. Predictive model is evaluated on its effectiveness to correctly
predict the target values by comparing the predicted with the original target values.

Splitting datasets against overfitting

« Training a predictive modelling technique and evaluating its
performance on the same data a methodological mistake because

may lead to:
— High accuracy on seen data

— Low accuracy (fall to predict / classify) on unseen data

Underfitting: model
fails to capture
underlying pattern in
training data

AValues

AValues

AValues

".' ®.
. le

Poe
¢ i}
i »

Over-fitting

Under-fitting

—
Time

—>
Time

—

Over-fitting ™

e

Over-fitting: model
learns training data
too well but fails to
generalize to new
data

« Splitting dataset into 3 parts (training, validation and testing

datasets) can prevent overfitting

When to split a dataset? Why?

« Splitting the dataset into training, validation and test datasets should
typically be one of the first steps in a data science project, before
performing any data preprocessing and transformations

* Why split the dataset early?

— Avoid data leakage: avoid passing information from test set to validation /
training sets

Scaling features using information from the entire dataset may lead towards modifying data
(rows) that will end up in the training dataset from data that will end up in the “unseen”
(test) set

— Realistic evaluation: test dataset should simulate new, truly unseen data

Performing data imputing, data encoding, data transformation (scaling, standardizing,
unskewing) and feature selection based on the training set alone ensures that test data are
truly unseen and not involved as happens in a real-world scenario

Best practices Iin a data science project

* |nitial data exploration

— Before splitting the data, perform basic exploratory data analysis (EDA) to
understand the structure of the dataset

— This includes checking for missing values, understanding data types and
feature distributions, and getting an initial sense of the data
« Splitting the data
— Split the data into training (,validation) and test sets
validation not needed if Cross Validation process will be used (we discuss it later)
* Preprocessing and Transformation

— After splitting, perform all preprocessing steps (such as scaling,
normalization, encoding, and imputation) separately on the training set
We can keep different versions of the training dataset: original & with transformations

— Fit (train) the preprocessing tools (like scalers and encoders) on the training
data and then apply these fitted tools to the validation and test sets.

Best practices Iin a data science project

» Feature Engineering and Selection

— Conduct feature engineering (feature selection / extraction) based solely on
the training data

— Apply the same feature transformations to the validation and test sets

* Model Training and Tuning
— Train your models using the training set
— Use the validation set to tune hyperparameters and select the best model

— Finally, evaluate the model on the test set to get an unbiased estimate of its
performance

Predictive techniques: Supervised learning

* You have input features (X) and an output target variable (y) available
and use a predictive modelling technique to build a model that
captures the relationship between input and output data

— Majority of predictive technigues are supervised learning technigues

« Supervised learning problems can be further grouped into:

— Classification problems: A classification problem is when the output variable
(y) is a category, such as “disease” or “no disease” (binary classification) and
“red” or “blue” or “green” (multiclass classification)

Popular techniques: Logistic Regression (binary classification), Linear Discriminant
Analysis (LDA), K-Nearest Neighbors (KNN), Decision Trees (Random Forest), Support
Vector Machine (SVM), Naive Bayes, Gaussian Naive Bayes, XGBoost, AdaBoost
— Regression problems: A regression problem is when the output variable (y) is
a numerical value, such as “price” or “weight”

Popular techniques: Linear Regression, Polynomial Regression, Support Vector
Regression (SVR), Random Forest Rearession, XGBoost Reagression, AdaBoost Reqgression

Predictive techniques: Unsupervised learning

* You only have input vars (X) and no corresponding output variable (y)
— no mapping from input to output data

« Goal: model the underlying structure or distribution in the data in
order to learn more about the data, extract insights

« Unsupervised learning problems can be further grouped Iinto:

— Clustering problems: A clustering problem is where you want to discover the
Inherent groupings in the data, such as grouping customers by purchasing
behavior.

Popular techniques: k-means

— Association problems: An association rule learning problem is where you

want to discover rules that describe large portions of your data, such as people
that buy X1 also tend to buy X2

Popular techniques: Apriori algorithm

Regression

* The process of estimating the relationships between a dependent
variable (or target variable) y which takes numerical values and one

or more independent (or input) variables (called features) x

Example: Estimate the relationship between the house price (dependent var) and the
house area in square meters (independent var)

House area is independent variable because we cannot mathematically determine it. But,
we can determine / predict house price value based on the house area.

« Some regression algorithms:
— Linear Regression (simple, multiple) — first degree eqguation
— Polynomial Regression — higher degree (29, 319, ...) equations
— Support Vector Regression
— Ensemble Regression (e.g. Random Forest Regressor, Ada Boost Regressor)

Linear Regression (LR)
* Linear regression assumes that the relationships between the
dependent (target) variable and the independent variables are linear

* Therefore, the dependent variable y can be calculated from a linear
combination of the independent variables (X):

p
Y=o+) B Xy =Po+BuXy+fyxXy + o
j=1

* Vector B involves initially unknown coefficients (parameters), which
will be evaluated using a training dataset with values for target
variable and features

Simple Linear Regression

« Simple Linear regression: one independent input variable X:

y = Po + p1X+E

— Goal: Fit the best intercept line (evaluate B, and B,) that passes

/

between all data points that minimizes the error

— y : Dependent variable (target variable)
— X : Independent variable (feature)
— By : Intercept (the target value when X = 0)

— B, : Slope. Explains the change in Y when X
changes by 1 unit = Ay/AX
— € : Error. This represents the residual value,

l.e. the difference between the observed and
the fitted (predicted) value

dependent Variable

.10
.15
.17
.22
.27

O O O O O X

regression

O O O RrK

.51
.92
.96
.53
.38

Bo

independent Variable

Multiple Linear Regression

« Multiple Linear regression: more than one independent variables Xi
In the linear function:

y = Bo + b1X1 + B2 X, +63 X3 + -+ B X;, +E

In this image n=2
Two independent variables:

Voo, o * Weight
B Se . « Horsepower
SN Dependent variable:
Lo « MPG (miles per gallon)
= . Regression finds the best-fitting
plane that passes through all
e points minimizing the error
10 ~
.
2000 2000 — = __,__1_;;———*‘;0? 250

Weight Horsepower

Linear Regression Methods

1. Ordinary least squares (OLS) is a non-iterative method that fits a
model (line or plane) such that the
sum of squared error Is
minimized.

120 4
Y =-1.02X + 123.07

2. Gradient descent finds the
linear model coefficients
iteratively >

* When the [coefficients are estimated, the equation can be used to
~ predict the target value y given an input X vector

Main assumptions for using Linear Regression

 Linear relationships

— between each independent variable and the dependent variable
can best be tested with scatter plots / pair plots

* No or little multicollinearity

— Low correlation between two or more independent variables — can be checked
with correlation matrix (visualized by heat map)

If multicollinearity is discovered, the analyst may drop one of the two variables that are
highly correlated, or simply leave them in and note that multicollinearity is present.

There are some techniques to remove multicollinearity such as centering each correlated
variable (remove mean value from all observed values of each variable) -- StandardScaler

* Normality of residuals

— LR requires the residuals (error terms) of the model to be normally distributed,
with mean equal to O — can best be checked with a histogram of the residuals;
normality test functions are also available

Linear Regression: Get to know data

import pandas as pd

import numpy as np

pd.read csv('Advertising.csv')
df.head()

df =

df .describe ()

Dataset description: Sales (in
thousands of units) for a particular
product based on the advertising
budgets (in thousands of dollars)
for TV, radio, and newspaper

media.

min
25%
50%
75%

max

Unnamed: 0
200.0000040
100.500000

57.879135
1.000000
50.7500040
100.500000
150.250000

200.000000

Unnamed: 0 TV Radio MNewspaper Sales

1 2301 372 69.2 221

2 445 39.3 451 10.4

3 172 45.9 69.3 9.3

4 1513 4.3 385 185

5 1808 10.2 584 129
TV Radio Mewspaper Sales
200.000000 200.000000 200.000000 200.000000
147.042500 23.264000 30.554000 14.022500
85.854236 14.845800 21.778621 5.217457
0.700000 0.000000 0.300000 1.600000
74.375000 0.975000 12.750000 10.375000
149750000 22.900000 25750000 12.900000
218.825000 36.525000 45100000 17.400000
295400000 49600000 114.000000 27.000000
\ J \ J

I I

Independent variables target

(features)

variable

https://www.cs.ucy.ac.cy/courses/DSC510/data/Advertising.csv

. . . . A
Linear Regression: Testing assumptions [
* Linearity

sns.pailrplot (df,x vars=["TV","Radio", "Newspaper"],y vars= "Sales",kind="reg")

MNewspaper

By looking at the plots we can see that none of the independent variables has an accurately linear
relationship with Sales but TV and Radio do still better than Newspaper which seems to hardly have any

- specific shape. So, it shows that a linear regression fitting might not be the best model for it. A linear model
might not be able to efficiently explain the data in terms of variability, prediction accuracy etc.

Linear Regression: Testing assumptions

* Multicollinearity
— Independent variables seem to be uncorrelated (there is no correlation
between independent variables > 0.75)

df features = df[["TV", "Radio", "Newspaper"]]
sns.heatmap (data=df features.corr())
plt.show ()

-10

Radio

Newspaper

™ Radio Mewspaper

Linear Regression: Prepare variable vectors

« Normality of residuals require us to perform the regression anc
calculate the residuals (error terms)

get the values of the dataframe that will be used in the regression model
dataset = df.values

[[230.1 37.8 69.2]
. . [44.5 39.3 45.1]
extract the features (independent variables) C 17.2 45.9 69.3]
X = dataset[:,1:4] [151.5 41.3 58.5]
print (X[0:107) > [180.8 10.8 58.4]
[8.7 48.9 75.]
, [57.5 32.8 23.5]
extract the dependent (target) variable [120.2 19.6 11.6]
y = dataset[:, 4] [8.6 2.1 1.]
print(y[O:lO])— [199.8 2.0 21.27]

N©)

—» [22.1 10.4 9.3 18.5 12. 7.2 11.8 13.2 4.8 10.6]

N e e e Iree| independent values
Linear Regression: Linear Regressors

LinearRegression() class uses

from sklearn.linear model import LinearRegression

lregr = LinearRegression () Ordinary Least Squares (OLS)

solver from scipy

ALTERNATIVE REGRESSOR
from sklearn.linear model import SGDRegressor
sgdr = SGDRegressor ()

SGDRegression object uses

stochastic gradient descent
method

« SGDRegressor uses the iterative method gradient descent to
estimate the coefficients

 The main reason why gradient descent could be preferred for
linear regression instead of the LinearRegressor is the
computational complexity: it's computationally cheaper (faster) to
find the solution using the gradient descent in datasets with large
number of features.

Linear Regression

NelsBSiElle ENfelP4=Te| independent values

from sklearn.linear model Import LinearRegression

lregr = LinearRegression ()

from sklearn.model selection import train test split

X train, X 2, y train, y 2

[[230.1 37.8 69.2]
[44.5 39.3 45.1]

. [17.2 45.9 69.3]
X_train | 1515 41.3 58.5]
[180.8 10.8 58.4]

[8.7 48.9 75.]

[57.5 32.8 23.5]

[120.2 19.6 11.6]

X 2 [8.6 2.1 1.]
— [199.8 2.6 21.2]

oy O N OIN © U1 W b

y train

train test split(X, y, train size=0.80)

/

Training data size: 80%

Remaining data (X_2,y 2) size: 20%

N e e e Iree| independent values
Linear Regression: Splitting datasets

from sklearn.linear model Import LinearRegression
lregr = LinearRegression ()

from sklearn.model selection Import train test split
X train, X 2, y train, y 2 = train test split(X, y, train size=0.80)
X val, X test, y val, y test = train test split(X 2, y 2, train size=0.50)

-~

L L EMO ..
12500 375 G530 Bl Vallc_latlon datq size: 50% of remaining
[44.5 39.3 45.1] 10.4 Testing data size: 50% of remaining

. [17.2 45.9 69.3] 9.3 .

X_train | 1515 41.3 58.5] 18.5 y_train
[180.8 10.8 58.4] 12.9
[8.7 48.9 75.] 7.2 Training d e 8O

rainin 1ze:
X val [57.5 32.8 23.5] 11.8 y val aining ata s e 0
- [120.2 19.6 11.6] 13.2 - Validation data size: 10%

[8.6 2.1 1.] 4.8 - . 100

X test [199.8 2.6 21.2]] 10.6] y test Testing data size: 10%

NN IPa=s independent values
Linear Regression: Model training

from sklearn.linear model Import LinearRegression
lregr = LinearRegression ()

from sklearn.model selection Import train test split
X train, X 2, y train, y 2 = train test split(X, y, train size=0.80)
X val, X test, y val, y test = train test split(X 2, y 2, train size=0.50)

train model (Fit linear model) and evaluate model R coefficients

model = legr.fit(X train, y train)

i PrmE mOdfl intercept (PO) BO = 2.99489303049533 \

print ("p0 =", model.intercept) [B1,B2,p3] = [0.04458402 0.19649703 -0.00278146]
print model coefficients

print ("[B1,p2,B3] =", model.coef)

Model after training: vy = 2.99 + 0.044*x, + 0.196*x, - 0.0027*x,

NN IPa=s independent values
Linear Regression: Making prediction

from sklearn.linear model Import LinearRegression
lregr = LinearRegression ()

from sklearn.model selection Import train test split
X train, X 2, y train, y 2 = train test split(X, y, train size=0.80)
X val, X test, y val, y test = train test split(X 2, y 2, train size=0.50)

train model (Fit linear model) and evaluate model R coefficients

model = legr.fit (X train, y train)
print model intercept ([(0) _

, . . | Residuals: [0.11256448 2.16206142 -9.18318566
print ("f0 =", model.intercept) 0.21444367 0.62679197 -1.90974587
print model coefficients -2.03802209 0.9477193 0.30597666 0.03544328]
print ("[B1,p2,B3] =", model.coef)

estimate residuals

predict

y _pred = model.predict (X val)
residuals 1s the differences between|real y values (y val) and predicted y values

‘residuals = y val - y pred
print ("Residuals:", residuals[:10])

N e e e Iree| independent values
Linear Regression: Testing assumptions

* Normality of residuals

— Residuals (error terms) of unstandardized input Normality of error terms/residuals
does not seem to be normally distributed 7-
— Run normality check to test whether the ‘.

residuals differ from a normal distribution

computing the p-value for the null-hypothesis . ~
that this distribution is a normal distribution g //
from scipy import stats 37
_, p = stats.normaltest (residuals)

p-value of 0.05 or greater means that the
distribution 1s a normal distribution //
print (p) # => 3.463801353587156e-10, residuals t
deviate from normal distrib.

Data rescaling/standardization

* The values of 3 coefficients represent the influence of each input

feature on the target variable: v =80+ BiX1 + B X, +B3 X3 + - B Xy +€
— When regression is used for explaining a phenomenon, i.e. how input features

Influence the output y, the values of (3 coefficients can shed light
E.g. if B1 > 32 one might say X1 has higher impact than X2 on y since a small change in

X1 results in a comparably large effect on y
— BUT we cannot directly compare the size of the various 3 coefficients if the

iInput variables are measured on different scales
By rescaling/standardizing variables, coefficients become directly
comparable to one another, with the largest coefficient indicating
which independent variable has the greatest influence on the
dependent variable
— We can rescale input features using MaxMinScaler, StandardScaler,
RobustScaler shown in Lab 4

Data rescaling/standardization

« Min-max scaler rescales each feature individually into a given
range, e.g. [0, 1]

« Standard scaler rescales each feature individually to make values
have zero mean (u = 0) and unit variance (g% = 1)

— Assumes that feature fits a Gaussian distribution (bell curve) with a well-
behaved mean and standard deviation

— Centers data around zero

* Robust scaler rescales each feature individually to make values
have zero median (median=0) and unit interguartile range (IQR=1)
— Center data around zero
— Robust to outliers

» None of these technigues changes the distribution of features, nor
have an impact on p-value (used in the normality test)

When to rescale/standardize features?

* When regression is used for making B coefficients directly
comparable to one another and reveal the influence of each feature
on target thus making it easy to present effects to non-statisticians

* Technically, feature scaling does not make a difference in linear
regression, however, can be used in gradient descent-based
algorithms (such as SGDRegressor used in linear regression)

feature scaling is needed to speed up the process of convergence
(see more detalils here)

When to unskew features/target variable?

« Unskewing transformations attempt to make long-tail distribution of a
variable symmetric as Gaussian/normal (bell-shaped) distribution

— Unskewing transformations: BoxCox, Yeo-Johnson, Sqrt, Log

 Linear regression (OLS method) does not require feature and target
variable distributions to be normal but requires normality of residuals

— But, in the presence of highly skewed target oan —

variable, the trained predictive model tends to
underestimate values under the long-tail area /\ /\\
and to overestimate values under the peak

where the majority of values lay Symmetrio Asymmetric/Skewed

Linear Regression: Target variable distribution

We prefer distribution of target variable to be symmetric (unskewed)
=> predictive algorithm will learn all sales values without bias

Distribution plot of the target value: right skewed (long tail to the right)

“\\ import seaborn as sns
30 A

25 1

distribution plot of the target variable
sns.displot (y_train,

N\

201 \

computing the p-value for the null-hypothesis that
\\ this distribution is a normal distribution
15 1

10 4

from scipy import stats
_r b =

kde=True)

Count

stats.normaltest (y train)
% # p-value of 0.05 or greater means that the distribution
5—(/ \\ 1s a normal distribution

print (p)
° FI) lID I I :

15 20 25

=> 0.039750209255936864, not normal distrib.

Distribution is skewed (not symmetrical) -- that it has a higher number of data points having low values, i.e., products

with less Sales. So, when we train our model on this data, it will perform better at predicting the Sales of products with
lower Sales as compared to those with higher Sales = Solution: Unskew target variable (See Lab4)

Linear Regression: Standardize X/ unskew y

from sklearn.preprocessing import StandardScaler

sc = StandardScaler () [

train scaler & apply transf on training set
X train scaled = sc.fit transform(X train)
print (X train scaled[0:10])
apply scaler on validation and test sets
X val scaled = sc.transform(X val)

X test scaled = sc.transform (X test)

Unskew the target variable values

Apply box-cox on training dataset to

estimate N parameter

y train scaled, lambda bc =
print (y train scaled[0:10])
apply transformation on y validation

y val scaled = boxcox(y val, Qlambda bc)

y test scaled = boxcox(y test, [lambda bc)

>

|
OO P P OOOOoO-HRF =

M/ —/ —/ / /@ /@ /@ /@ /@ /@

boxcox (y train)
>

Estimate the parameter A on the training data set, then use the estimated value to
apply the transformation to the training and test data set to avoid data leakage
A parameter will also used in reverse BoxCox transformation

Transformed vector
Evaluated lambda (A) value

.34155345
.4053143
.08995151
.69761311
. 76609699
.56461564
.67570755
.57770476
.293041064
.54218127

P O P OO oo o

.0355176

.08249594
.40243892
.18979597
.01442296
.42286082
.44914602
.38268978
.91979354
.20408331

1.]
.30629738]
.81980897]
.90868666]
.28518893]
]
]
]
]
]

[4.79407796 4.35326964 6.0707102
©.64564903 5.78373694 2.45296201 4.06788525
6.32143636 4.66122092]

©5941078

.01627544
.36243065
.17272078
.29558792
.19994556

6.32143636

SEREEIr: independent values
Linear Regression

create a new model to be trained on scaled data
lregr scaled = LinearRegression()

train model (Fit linear model) and evaluate model B coefficients
model scaled = lregr scaled.fit (X train scaled, y train scaled)
print model intercept

print ("0 =", model scaled.intercept)

print model coefficients BO = 5.719657352358076 ﬁ

print ("[B1,p2,B3] =", model scaled.coef) |[[B1,p2,p3] = [1.1333148 0.80643841 -0.01058377]
"TV", "Radio", "Newspaper"

estimate residuals
predict and estimate residuals
y _pred scaled = model scaled.predict (X val scaled)

« Standardization changes the interpretation of coefficients.
* Reveals the “importance” (influence) of each independent variable in predicting the dependent variable.
» TV has the highest coefficient, thus can be inferred that it is the most important factor for increasing sales.

minimize

maximize

Linear Regression: Model evaluation

[

\

Model evaluation is a core part of building an effective machine
learning model

Evaluation metrics provide a measure of how good a model
performs and how well it approximates the relationship between the
dependent variable and the independent variables

Some regression evaluation metrics:

- — MSE: Mean Squared Error MSE = % ?zl(yAi B ’yi)2 n = number of data points
Error is squared: Large prediction errors are penalized Yi = observed value i

— MAE: Mean Absolute Error MAE = 23" |y, — il
Does not penalize large prediction errors

- RMSE: Root Mean Squared Error RMSE = \/% S (9 — yi)?
[— R-squared (R2): a statistical measure of how close the data are to the fitted

Y, = predicted value |

L regression line on a convenient 0-1.0 scale (O: poor fitting, 1: perfect fitting)

NN IPa=s independent values
Linear Regression: Evaluate model

from sklearn.metrics import mean squared error
from sklearn.metrics import r2 score

prediction on validation data
Model trained on unstandardized features and non-transformed target wvalues

y_pred = model.predict (X val) [15.48743552 6.53793858 10.78318566 11.58555633 21.17320803
print (y pred[0:10]) 15.10974587 18.13802209 7.4522807 12.29402334 10.46455672]
MSE: 7.289025693003447 , RMSE: 2.699819566749498 , R2:

Mean Squared Error (MSE) 0.7703057423991149

MSE = mean squared error(y val, y pred)

Root Mean Squared Error (RMSE)

RMSE = np.sqrt (MSE)

r2 = r2 score(y val, y pred)

print ("MSE:", MSE, ", RMSE:", RMSE , ", R2:", r2)

independent values target values
Linear Regression: Evaluate model

prediction on validation data
Model trained on standardized features and (box-cox) transformed target values

y pred scaled = model scaled.predict (X val scaled)

MSE_scaled = mean_squared_error(y val scaled, y_pred scaled) MSE: 1.0787997132391625 , RMSE: 1.0386528357633085 ,
RMSE scaled = np.sqrt(MSE scaled) R2: 0.6630640925730389

r2 = r2 score(y val scaled, y pred scaled)

* Model performance in terms of R2 seems worse than without scaling
but predicted values for Sales (y_pred_scaled) and validation values
for Sales (y_val scaled) are box-cox transformed; not directly

comparable with original values
* Revert to original scale using inverse box-cox and measure error

y pred unscaled = inv boxcox (y pred scaled, lambda bc)

MSE_unscaled = mean squared error(y val, y pred unscaled) MSE: 6.010514707137693 , RMSE: 2.451635108889105 ,
RMS?_unscaled = np.sqrt (MSE unscaled) R2: 0.8105946155766224

r2 = r2 score(y val, y pred unscaled)

 R2 score is higher than before we had a model trained on non-
transformed data — better performance with scaling and unskewing

Polynomial (or non-linear) regression

* When non-linear relationship (curve) is observed between dependent
and independent variables

« Polynomial Regression comes to the play which predicts the best fit
that follows the pattern (curve) of the data, as shown in the pic below:

10

Polynomial regression

* Relationships between the independent variable(s) x and the
dependent variable y are modelled as an n'" degree polynomial in x

- Example (for one independent variable X):
— guadratic model (2" degree) : y = By + B X + [,X* +€
— cubic model (39 degree) : y = By + B X + BoX? + f3X3 +€

* Predictive performance of the model tends to increase (i.e. error is
getting lower) as we increase the degree of the model

Polynomial regression: of which degree?

* Increasing the degrees of the model also increases the risk of over-
fitting the data

15t degree polynomial 4™ degree polynomial 20t degree polynomial

20,04

0.50 0.75 10 0.00 0,25 0.50 0.75 00 0.00 0.25 0.50
X X X
Underfit Good fit Overfit

* The degree of the polynomial to fit is a hyperparameter that cannot
be inferred while fitting the machine to the training set because it
needs to be set prior the learning phase

How to find the right degree of the equation?

 In order to find the right degree for the model to prevent over-fitting
or under-fitting, we can use any of the two approaches below:

— Forward Degree Selection:

Start with a model of degree=1 and at each step gradually increase the model’'s degree
until the best possible model (e.g. that minimizes MSE, RMSE) is reached

— Backward Degree Selection:
Start with model of a large degree and at each step gradually decrease the model’s
degree until the best possible model is reached
— At each step:
Train the model using the training dataset
Predict the target value using the validation dataset
Evaluate the performance of the model using any evaluation measure (MSE, RMSE, R2)

— At the end, when the best model is chosen, evaluate its final performance
by predicting the target value using the testing dataset.

Training Polynomial regression model using Linear Regressor

* Let's say we have dataset of one input feature, and we need to build a
polynomial regression model of 3" degree (cubic model)

— y = Bo + f1X + BX* + B5X°
* Polynomial regression model can be trained using linear regressor
(LR) since LR doesn’t know that X? and X3 are the square of X and

the cube of X respectively, it just thinks they are another features

— Prior running LR we expand the dataset, i.e. beyond the column X of the
dataset, we create the extra columns X2 and X3

The unknown parameters to be estimated after training are 3,, B,, B,, Bs
* In a two-feature dataset X,, X, Interaction term

— 2" degree polynomial model : y = By + f1X1 + Lo Xy + B3 X7 + ,84@+ B X%
You apply linear regression for five inputs: x1, x2, x12, X1x2, and x,2
Result of regression: the values of six parameters 3,, B,, B,, Bz, Bi, Bs

Is rescaling/unskewing needed?

- While creating power terms (e.g. X{ , X7), if X, is not centered first
(using StandardScaler or RobustScaler), the squared and cubic
terms will be highly correlated with X,

» While creating interaction terms (e.g. X; X,), if both X; and X, are
not centered first, some amount of collinearity will be induced, I.e.
X1 X, will be correlated with X, and X,

« Both situations can negatively affect the estimation of the 3
coefficients, therefore centering can be applied on all input features
prior creating power and interaction terms (see here)

« Feature and target variable distributions are not required to be
Gaussian, but unskewing transformation is generally recommended
If distributions are heavily skewed

Polynomial Regression: Boston Housing Datagét

« Dataset: 506 houses by 13 features /j
* Objective: predict house prices

4
. A
import numpy as np (|

import matplotl ib. pyplot as plt crim zn indus chas nox rm age dis rad tax ptratio black Istat medv
0 000632 180 23 0 0338 8575 652 4.0900 1 296 133 396890 498 240
import pandas as pd 1 002721 00 707 0 0469 6421 789 49671 2 242 17.86 39690 0914 216

import seaborn as sns 2 002720 00 707 0 0460 7185 611 49671 2 242 17.8 39283 403 347
3 003237 00 218 0 0458 6998 458 60622 3 222 187 30463 204 334
—))
boston = pd.read csv('Boston.csv') 4 006905 00 218 0 0458 7147 542 60622 3 222 187 39690 5.33
boston.head ()

extract features and target variables
X = boston.drop (columns=["'medv'])
y = boston|['medv']

split to training, validation and test dataset (80% / 10% / 10%)
X train, X 2, y train, y 2 = train test split(X, y, random state = 5, train size = 0.8)
X val, X test, y val, y test = train test split(X 2, y 2, random state = 5, train size = 0.95)

https://www.cs.ucy.ac.cy/courses/DSC510/data/Boston.csv

Data transformation

» Feature standardization and rescaling do not improve the predictive
power of the model when using linear regressors

« Target variable transformations (such as Box Cox, Yeo-Johnson
when skewness Is apparent) can improve the model predictive power

distribution of the target values
sns.displot(y train, kde=True)
plt.show ()

40 -

statistical test

p-value >= 0.05 means that the
distribution 1s a normal distribution
from scipy import stats

_, p = stats.normaltest(y train) 10 -

print(p) # => 1.76 e-20

60

50

U 304

N

Distribution is skewed (not symmetrical): The mean is
around 20 and the first part already looks quite like a normal
distribution. But there is a large right tail of higher MEDV
values. This could lead to the problem, that the model better
predicts the MEDV values around the mean but is quite bad
at predicting the MEDV values from the right tail. This is
because most of the time the model sees values around the
mean and is therefore biased towards these MEDV values.
=>» Solution: Unskew target variable (See Appendix)

-

T
10

20

T
30

medv

40 50

Data transformation

« Here, we use hoxcox transformation

v - transformation (box cox)

from scipy.stats import boxcox Transformed vector

y train bc, lambda be = boxcox(y train) Selected lambda (A) value
(A value can be used in
reverse Box Cox transf.)

_, p = stats.normaltest(y train bc)
print(p) # => 0.13691571809545577
sns.displot(y train bc, kde=True)

 Distribution of the transformed target
variable

— This distribution already looks quite similar to
a normal distribution and achieves a p-value
of 0.13, which is larger than 0.05. Therefore,
we can say that the distribution approaches a
normal distribution

Count

60

204

10 7

o~

Feature Selection — Correlation matrix

-1.0

 Create correlation matrix on the
training dataset

 Observations:

— As we can see, only the features rm, ¥ M.
and Istat are highly correlated with
the output variable medv_boxcox — ° B 9 i
— Avoid using high correlated features H -
together to avoid multi-collinearity
rad / tax are strongly correlated
dis / indus / age are strongly correlated

crim
1

0.2 P0E25-0.048800438 -0.18 | 0.34 | -0.39 QKA1 L -0.32 pligey -0.39

. -0.54 -0.035 -0.53 [0:34 JSTH -0.32 -0.32 -0.42 0.17 -0.42 0:39 - 0.8
0.42)540098) TH AN 0.63 0.74 |) R -0.48

048-0.035 0. 098 0.13 0.065 0.1 -0.120.00093.018-0.12 0.033-0.045 0.16

Zn

- 0.6

nox chas indus

age

b 0.2 -0.38
0.3 H 0.71 -0.12 -0.78 | 0.2 -0.74 -0.51 -0.55 -0.23 [0.29 -0.49 | 0.25
- 0.61 QiR M.OODQM 2.2 gustog -0.51 ! ! -0.44 SIS -0.38
-0.32 D.O lE:H -0.26 POMEES -0.55 A ! 0.43 -0.45
-0.42 P0Ed 1 -0.12 0.21 -0.36 0.26 -0.23 POMES0.46 -0.18 0.3 -0.51

0.32 0.17 -0.35 0.033 -0.37 0.071 -0.25 [0.29 | -0.44 -0.43 -D.lB-').EHI 0.32

0.39 BEESEN -0.48 0.16 -0.43 gON:N -0.38 0.25 -0.38 -0.45 -0.51 f0.32° -0.74

dis

rad

Istat black ptratio tax
1

medv

|
crim zn indus chas nox rm age dis rad tax ptratioblack Istat medv

Feature Selection — Importance

Feature Importance using ExtraTreeClassifier

from sklearn.ensemble import GradientBoostingRegressor

Build an estimator and compute the feature importances

estimator = GradientBoostingRegressor (n estimators=100, random state=0)

Feature importances

estimator.fit (X train, y train bc) 0.7 Feature ranking:

Lets get the feature importances. 1. feature 12 (0.562950)

Features with high importance score higher. 0.6 7 2. feature 5 (0.172050)

: _ ' : 3. feature 0 (0.101548)

importances = estimator.feature 1mportances

B — b — 4. feature 7 (0.062867)

5. feature 4 (0.034609)
6. feature 10 (0.027611)
7. feature 9 (0.012222)
8. feature 11 (0.010539)
9. feature 6 (0.010116)

As we can see, the features Istat, and rm
achieve the highest importance among all
features for predicting the transformed
target variable

10. feature 8 (0.003187

11. feature 2 (0.001832

12. feature 3 (0.000308
1

)
)
)
. feature 0.000159)

Feature Selection — Sequential Forward Selec

from mlxtend.feature selection import SequentialFeatureSelector as SFS
from mlxtend.plotting import plot sequential feature selection as plot sfs

sfs = SFS(estimator,
k features=(2,13),
forward=True,
floating=False,
scoring='r2"',
cv=10)

sfs = sfs.fit (X _train, y train bc)

plot sfs(sfs.get metric dict(), kind='std dev')

plt.title('Sequential Forward Selection')
plt.grid ()
plt.show ()

print ('Selected features:',sfs.k feature i1dx)
print ('Prediction (CV) score:',sfs.k score)

Performance

Sequential Forward Selection (w. StdDev)

0.9

0.8

0.7

0.6 1

0.5 1

3 4 5 6 7 8 9 10 11 12 13
Number of Features

X train = X train[['lstat', 'rm']]
X val = X val[['lstat', 'rm’]]

Feature Selection Y test = X testi['latar’, 'rm'l]

* For educational purposes, we keep two features (Istat and rm)

* We use both Linear and Polynomial regression to build a predictive
model for predicting the target variable

We can see that Istat o RS

) doesn’t vary exactly ’
sl o ° . .

SRR (2 S ST K- linear way.

0 5 10 15 20 25 0 35 4 5 & 7 8 9

Linear Regression on Boston dataset

* Results using the initial dataset without transformations

Model performance on validation dataset

RMSE is 5.203457199881524
R2 score is 0.631266105649837

« Results (on original scale) using Box Cox transformation on target
variable

Model performance on validation dataset

RMSE 1s 4.770472127125568
R2 score 1s 0.6900784237549225

» Better performance is experienced when target variable is
unskewed

Linear Regression (with hyperparameters)

No hyperparameters used thus far: 1r = LinearRegression ()

If hyperparameters are to be used, they need to be set prior training

Linear regression can setthe £it intercept hyperparameter

— The intercept term (often labeled the constant [3,)) is the expected mean value
of Y when all X=0

— Default value is true: 3, is part of the model

Set lr = LinearRegression(fit intercept=False) and

follow the process (training, prediction on validation dataset, model

evaluation) using the transformed target variable

— Significant improvement of the model

Model performance on validation dataset (without 1ntercept term)

RMSE is 3.8402695055646077
R2 score 1is 0.7991589449167994

Polynomial Regression (degree = 2)

f k1l . ' ' t Pol ialFeat
oM SELCATn.PEEPTOCEsSIng MIport Fotynomtatrearures convert the original features (X_train) into their

poly features = PolynomialFeatures (degree=2) higher order terms (X_train_pOIY) via the
PolynomialFeatures class

transform training set features to higher degree features
X train poly = poly features.fit transform(X train) lstat r

print(_[O:S]) » 33

3

print (X train poly[0:5]) 283
418
502
fit the transformed features to Linear Regression 402

poly model = LinearRegression ()
train the model Istat rm Istat? Istat*rm rm?2

poly model.fit (X train poly, y train bc) ([1. 18.35 5.701 336.7225 104.61335 32.501401]
[1. 3.16 7.923 9.9856 25.03668 62.773929]
[1. 20.62 5.957 425.1844 122.83334 35.485849]
[1. 9.08 6.12 82.4464 55.5696 37.4544]
[1. 20.31 6.404 412.4961 130.06524 41.011216]]

transform validation set features to higher degree features
X val poly = poly features.fit transform(X val) Bias column: Feature in

which all polynomial powers
are zero. Acts as an intercept
term in a linear model.

predicting on validation dataset
y _val predict = poly model.predict (X val poly)

revert to original scale
y _val predict orig = inv_boxcox(y val predict, lambda bc)

Polynomial Regression (degree = 2)

evaluating the model on validation dataset

rmse val orig = np.sgrt(mean squared error(y val, y val predict orig))
r2 val orig = r2 score(y val, y val predict orig)

print ("Model performance on validation dataset (original scale™)
erint("----————————--——"-"-"""""""""""""""—"—"—"—"—"—-"——= ")

print ("RMSE 1is {}".format (rmse val orig))

print ("R2 score is {}".format (r2 val orig))

RMSE of training set 1is 4.177886288872826
R2 score of training set 1s 0.7622928102676387

We can observe that the RMSE error is lower (thus better) when using polynomial regression
as compared to linear regression with default hyperparameters but higher (thus worse) when
compared to linear regression with £it intercept=False. However, hyperparameter tuning
needs to be performed to:

« explore different polynomial degrees beyond 2

« keep interaction_only features (e.g. remove Istat?and rm?), default is False

« try without include bias, default is True

Problem with dataset splitting

« Results shown thus far (RMSE, R2) depend on a particular choice
(split) for testing and validation datasets to train and evaluate the
model

— Based on the model’s performance on unknown (validation) data, we cannot
determine if it is underfitting, overfitting, or “well-generalized”

« Solution: Repeat the process of randomly splitting data into subsets
and average results => Cross Validation (CV)

Cross validation

K-folds Cross Validation

p—

Prior running Cross-Validation, split initial dataset into train/ sl
Split train dataset randomly into k subsets called folds

Repeat:

— Train model on k-1 folds

— Use k™" fold as validation dataset to measure model performance
Measure score (e.g. RMSE, R2 for regression, accuracy, fl1-score for classification)

Until each of k folds has served as validation fold

Combine (average) k recorded scores to estimate the
error/accuracy of the model: cross-validation score

Modify model hyperparameters and re-run cross validation
to find the best hyperparameter values

881 dataset is used for the unbiased final evaluation of the model
with the best model parameters and hyperparameters

k-folds Cross Validation

V2o,

>

Orginal Dataset

Split into training
and testing data

Training Set

Split training data
into 5 folds

. R R S
 Foldl | Fold2 |, Fold3 , Fold4 | Fold5 |

Perform k-fold
cross-validation

Train Validate

Train Validate Train
Train Validate Train

Train Validate Train

Validate Train

Testing Set]

Final model
evaluation

. Y
Perform model selection, tune parameters, etc.

v

[Testing Set]

GridSearchCV

Cross validation (CV) process creates a series of train and validation
splits to train and measure the predictive power of the model

During training (within CV process), best values for model
parameters are determined

Model hyper-parameters cannot be directly learnt from the
training phase; thus, they need to be set before the CV process
— When modifying a hyper-parameter, full CV process needs to be repeated

— When multiple hyper-parameters are involved in a model, finding the best
combination of hyper-parameter values is a hard job

Data encoding, transformation should be performed right after dataset
splitting, within the CV process to avoid data leakage

Best strategy to implement all these steps: GridSearchCV

Exhaustive param search: GridSearchCV

« GridSearchCV: Exhaustive search over a specified hyper parameter
combination for an estimator (classifier / regressor)

« Grid of hyper-parameter values is specified with the param_grid list

— For example, for Polynomial Features estimator with degree, interaction only
and include bias hyperparameters:

param grid = [

{ "degree": [1, 2, 3, 4], "interaction only": [True, False] },
{ "degree": [1, 2, 3], "include bias ": [True, False] }

]
— specifies that two grids will be explored:

combination of degree values [1, 2, 3, 4] and interaction_only True/False,
combination of degree values [1, 2, 3, 4] and include_bias True/False

« Evaluates model for each combination using CV for a scoring metric

grid = GridSearchCV (estimator, param grid, cv=10, scoring = 'r2', n jobs=-1)

grid.fit (X train, y train)

n_jobs parameter is provided by many sklearn estimators (e.g. in RandomForest, GridsearchCV, etc.). It accepts number of cores to use for parallelization. If value of -1 is
given then it uses all cores. Therefore, | would like to recommend to you to use n_jobs=-1 where applicable to speed-up your computations.

Pipeline

« Recall that polynomial regression process involves 2 sequential
steps:
— Create polynomial features
— Run linear regression

* |tis possible to create a pipeline combining these two steps
(PolynomialFeatures and LinearRegression)

* A pipeline is used as estimator in GridSearchCV

Polynomial regression: Pipeline with GridSearchCV

from sklearn.pipeline import Pipeline
from sklearn.model selection import GridSearchCV

split dataset to train/test 80% / 20%
X train, X test, y train, y test = train test split(X, y, random state = 5, train size = 0.8)

Define a pipeline involving PolynomialFeatures
and LinearRegression steps

pf = PolynomialFeatures ()

lr = LinearRegression|()

name each step
pipe = Pipeline (steps=[("poly", pf), ("linear", 1lr)])

Parameters of pipelines can be set using ‘' ' separated parameter names:
param grid = [
{ "poly degree": [1, 2, 3, 4, 5], "poly interaction only": [True, False], "poly include bias": [True, False] },

{ "poly degree": [1, 2, 3, 4], "poly interaction only": [True, False], "poly include bias": [True, False], "linear fit intercept": [True,
False] }

]

make grid object for GridSearchCV and fit the dataset
search = GridSearchCV (pipe, param grid, scoring = 'r2', cv=10, n jobs=-1)

search.fit (X train, y train) ‘\\\\\\\’

The sklearn scoring API always maximizes the score, so metrics which need to be
minimized like RMSE are negated ("neg root mean squared error")

Polynomial regression: Pipeline with GridSearchCV

print results

print (" Results from Grid Search ")

print ("\n The best estimator across ALL searched params:\n", search.best estimator)
print ("\n The best score across ALL searched params:\n", search.best score)

print ("\n The best parameters across ALL searched params:\n", search.best params)

Evaluate on the test set

best model = search.best estimator
y pred = best model.predict (X test)

Results from Grid Search

The best score across ALL searched params:

root mean square error of the model 0.8239040045809777
rmse = (np.sdgrt(mean squared error(y test, y pred)))
o o o o The best parameters across ALL searched params:
3 {'linear fit intercept': False, 'poly degree': 2,
r-squared score of the model 'poly include bias': True, 'poly interaction only': True}

r2 = r2 score(y test, y pred)
Model performance on testing dataset

print ("\nModel performance on validation dataset") | -———-————-————mmmm—mmmm————m
print("---————————-———-""""-"""""""—"—-——————————= ") RMSE is 3.220157338361434
print ('RMSE is {}'.format (rmse)) R2 score is 0.8675577863835

(

print ('R2 score is {}'.format (r2))

Pipelines

* A pipeline accepts a list of estimators not only predictors but also data
Imputers, encoders, transformers to be applied prior training and
evaluating a predictor

im = SimplelImputer (strategy="mean")
sc = StandardScaler ()
preprocessing pipeline = Pipeline ([("imputer", im), ("scaler", sc)])

pf = PolynomialFeatures ()
lr = LinearRegression ()
training pipeline = Pipeline ([("poly", pf), ("linear", 1lr)])

Pipelines can be attached to one another!
full pipeline = Pipeline ([("preprocessing", preprocessing pipeline),
("training", training pipeline)])

param grid = [

{ "training poly degree": [1, 2, 3, 4, 5], "training poly interaction only": [True, False],
"training poly include bias": [True, False] },
{ "training poly degree": [1, 2, 3, 4], "training poly interaction only": [True, False], "training poly include bias":

[True, False], "training linear fit intercept": [True, False] }

]

Pipelines with ColumnTransformer

« By default, transformations are applied to all columns of feature set

* We can apply different transformations per column using

ColumnTransformer. Example:
For int-based features (e.g. chas & rad) we will apply most_frequent imputation strategy
For rm and age we will apply mean imputation strategy followed by standard scaling

For the remainder features do nothing

from sklearn.compose i1mport ColumnTransformer
from sklearn.preprocessing i1mport StandardScaler
from sklearn.impute import SimplelImputer

pipelinel = Pipeline([('freq imputer', SimpleImputer (strategy='most frequent'))])
pipeline2 = Pipeline ([('mean imputer', SimpleImputer (strategy='mean')), ('scaler',
StandardScaler())])

preprocessing pipeline = ColumnTransformer ([
('pipelinel', pipelinel, ['chas', 'rad']),
('pipeline?2', pipeline2, ['rm', 'age']),
set remainder to passthrough to pass along all
the un-specified columns untouched to the next steps

remainder="'passthrough'

1)

Pipelines with TranformedTargetRegressor

Pipeline
without target

Pipeline with

* Imputers, encoders and transformations are applied on input features

* Transformations (e.g. boxcox) on target variable can be applied using
TranformedTargetRegressor

target

S « TransformedTargetRegressor is a meta-

+ training pipeline = Pipeline(] estimator that performs regression on a

s ("poly”, PolynomialFeatures()), transformed target variable

2 ("linear”, EESEE L) . Regressor and Transformer are given

S 1) as input

= ‘ - PowerTlransiormer can be used to apply
either boxcox or yeo-johnson

c . , , , , transformations.

o training pilpeline = Pipeliline ([

% ('poiy' , PolynomialFeatures()),

E ('linear', TransformedTargetRegressor (_ N

HUC—D) regressor=LinearRegression (), (— > works W'th_ positive

% transformer=PowerTransformer (method='yeo-johnson') and negative values

)) "boxcox works with strictly
1) (______—» positive values

Pipelines with TranformedTargetRegressor

« TranformedTargetRegressor With log transformation

Pipeline
without target
transformation

-
= O
iy ot
S = ©

)

2 S =
= @ L2
L+ O
o c
o £

training pipeline = Pipeline ([
("poly", PolynomialFeatures()),
("linear"™, LinearRegression())

1)

)

training pipeline = Pipeline ([
('poly', PolynomialFeatures()),
('linear', TransformedTargetRegressor (
regressor=LinearRegression (),
func=np.log, inverse func=np.exp
))
1)

Support Vector Regression (SVR)

- Basic idea of support vector regression

— Find optimal hyperplane that approximates
the relationship between the input features
and the target variable.

« Hyperplane: A hyperplane is a decision
surface that is used to predict the continuous output and fits the
data points. Each data point is a row of the dataset. The data points
on either side of the hyperplane that are closest to the hyperplane
are called Support Vectors. These are used to plot the required
surface that shows the predicted output of the algorithm.

Support Vector Regression (SVR)

* Decision Boundaries: These are the two surfaces that are drawn
around the hyperplane at a distance of € (epsilon).
— SVR basically considers the points that are within the decision boundaries
— Best fit: the hyperplane that fits a maximum number of points.

Decision

/ Boundary \
Decision

/ Boundary \

Support Vector Regression (SVR)

- Kernel: A kernel Is a set of mathematical functions that takes data
as input and transform it into the required form. These are generally
used for finding a better hyperplane in a higher dimensional space

— The most widely used kernels include linear, polynomial (poly), radial basis
function (rbf) and sigmoid. By default, RBF is used as the kernel. Each of
these kernels are used depending on the dataset.

Support Vector Regression (SVR)

* SVR important hyperparameters:
— kernel: default value is rbf

— C: Regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive. Default value is 1.0

— epsilon: boundary threshold (¢), default value is 0.1
— gamma: kernel coefficient for rbf, poly and sigmoid, default value is ‘scale’
— degree: degree of the polynomial kernel (poly)

 In distance-based regression algorithms (such as Support Vector

netween data
features contri
be dominated

Regressor - SVR) that use (Euclidean or Manhattan) distances

points, feature scaling is needed so that all the
pute equally to the distance otherwise distance may

oy features with larger scales

E.g. Distance(X{,X,) = \/(3 —1027)? + (4 — 2123)2 distance is dominated by X, values

SVR with GridSearchCV

« Exhaustive search over specified parameter values for an estimator

from sklearn.model selection import GridSearchCV

Define a pipeline involving Robust Scaler and SVR

Pipeline (steps=]|

("scaler", RobustScaler()),

("svr", TransformedTargetRegressor (regressor=SVR(),
transformer=PowerTransformer (method="'yeo-johnson')))

pipe svr

1)

parameter grid
parameter grid = [

The best estimator across ALL searched params:
Pipeline (steps=[('scaler', RobustScaler()), ('svr',
SVR(C=1000, gamma=0.001))1)

The best score across ALL searched params:
0.7649632977483316

Model performance on validation dataset

RMSE is 2.9887655163221054
R2 score is 0.8859078053060818

{'svr regressor C': [1, 10, 100, 1000], 'svr regressor kernel': ['linear']l},
{'svr:i regresso;:_ c': (1, 10, 100, 1000], 's;;;_regressgg;_gamma': [0.001, 0.0001], 'svr regressor kernel': ['rbf']},
{'svr regressor C': [1, 10, 100, 1000], 'svr regressor degree': [1, 2, 3, 4, 5, 6], 'svr regressor kernel':
['poly'1}]
make grid SVC object for GridSearchCV and fit the dataset
grid SVR = GridSearchCV (pipe svr, parameter grid, scoring = 'neg root mean squared error', n Jjobs=-1)

grid SVR.fit (X train, y train)

print results

print (" Results from Grid Search ")
print ("\n The best estimator across ALL searched params:\n"
print ("\n The best score across ALL searched params:\n",
print (

, grid SVR.best estimator)
—-grid SVR.best score)
'\n The best parameters across ALL searched params:\n", grid SVR.best params)

SVR model does not outperform the polynomial model. It achieves slightly lower R2 score.

Ensemble learning

* Ensemble learning: train multiple ML algorithms (learners) and
combine their predictions in some way

« Ensemble model is a model that consists of many base (weak)
models which tends to make more accurate predictions than
individual (weak) base models

* We have three kinds of ensemble methods using:

« Sequential Homogeneous Learners (Boosting), e.g. AdaBoostRegressor,
GradientBoostingRegressor, LightGBM (installation) XGBoost (installation),
CatBoost (installation)

« Parallel Homogeneous Learners (Bagging), e.g. BaggingReqgressor,
RandomForestRegressor

« Parallel Heterogeneous Learners (Stacking), e.g. StackingRegressor

For more info please see the Appendix

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://lightgbm.readthedocs.io/en/stable/
https://anaconda.org/conda-forge/lightgbm
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://anaconda.org/conda-forge/xgboost
https://catboost.ai/
https://anaconda.org/conda-forge/catboost
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

Is rescaling/unskewing needed?

« Ensemble methods (Random Forest, XGBoost, AdaBoost) do not
require feature rescaling to be performed as they are not sensitive
to the variance in the data

* A skewed dependent variable is not necessarily a problem for
ensemble methods per se — there are no assumptions as for
example the normality of residuals (errors) that need to be met like
In the linear model

RandomForestRegressor with

GridSearchCV

from sklearn.ensemble import RandomForestRegressor
Number of trees in random forest

Warning: This may run several minutes!!

n estimators = [int(x) for x in np.linspace(start = 200, stop = 1000, num = 10)]
Maximum number of levels in tree
max depth = [int(x) for x in np.linspace (10, 110, num = 11)] The best parameters across ALL searched params:

- {'rf regressor Dbootstrap': False,
max depth.append (None) . — — o

T . . rf regressor max depth': 60,
Minimum number of samples required to split a node e — = v .

. . rf regressor max features': 'sqgrt',
mlnfsgmples_spllt (2, 5, 10] . 'rf regressor min samples leaf': 1,
#lMlnlmum number of samples required at each leaf node 'rf regressor min samples split': 2,
min_samples leaf = [1, 2, 4] 'rf regressor n estimators': 377}
Method of selecting samples for training each tree
bootstrap = [True, False] Model performance on testing dataset
parameter grid = {'rf regressor n estimators': n estimators, R2 score is 0.8930468561703625
'rf regressor max features': max features,

'rf regressor max depth': max depth,
'rf regressor min samples split': min samples split,
'rf regressor min samples leaf': min samples leaf,
'rf regressor Dbootstrap': bootstrap}
pipe = Pipeline([("rf",
transformer=PowerTransformer (method="'yeo-johnson')))])

make grid RF object for GridSearchCV and fit the dataset
grid RF = GridSearchCV (pipe, parameter grid, scoring = 'r2',
grid RF.fit (X train, y train)

print results

print (" Results from Grid Search ")

. print ("\n The best estimator across ALL searched params:\n",
print ("\n The best score across ALL searched params:\n",
print ("\n The best parameters across ALL searched params:\n",

n_jobs=-1)

Slightly better results than SVR model but
slightly worse than the polynomial model.

TransformedTargetRegressor (regressor=RandomForestRegressor (),

grid RF.best estimator)
grid RF.best score)
grid SVR.best params)

Appendix
University of Cyprus
Department of

Computer Science

s validation dataset needed?

* While it is possible to split your dataset into just training and testing
sets, incorporating a validation set or using cross-validation is
generally recommended for model tuning and selection.

Use Direct Train-Test Split

 When you have a large enough dataset that ensures the training and test
sets are sufficiently representative of the entire dataset.

* When you are primarily interested in a quick evaluation and you are not
performing hyperparameter tuning

Use Train-Validation-Test Split

« When you want to tune hyperparameters and select the best model
configuration before evaluating the final performance on a test set.

» This approach provides a dedicated validation set for model selection and
tuning, while keeping the test set strictly for final evaluation.

Predictive modeling techniques

1. Learning/training phase:

Train data used to train a predictive modelling technique & create a model
— model represents what was learned by a machine learning algorithm

Example:
— Dataset: given input variable X we want to evaluate the output y

RS

X y
0.10 1.51 v
0.15 0.92

0.17 1.96 "%
0.22 0.53 t
0.27 0.38

— Predictive modelling technique to train: use a Polynomial equation and try to fit data
(find the “best curve” that passes between points): y = B, + B, X + B,X?

» Equation parameters: B,, B;, B, will be estimated during training
» Equation hyperparameter: degree of the polynomial function (configured prior training)

— The outcome of training phase can be the model e.g.: y = 0.45 + 0.7X+ 1.2X?

Predictive modeling techniques
2. Validation phase

Validation data used to make predictions and measure the performance (e.g. error

between real and predicted target values) of the model and to tune hyperparameters
Example:

After measuring the performance of the quadratic (2" degree) model, change the degree of the

polynomial equation e.g. to 3, re-run on training (phase) data to create a new cubic (3" degree)
model and measure the performance of the new model on validation data — repeat by changing
the degree until the best model (with best performance, e.g. lower error) is achieved

3. Testing phase

Estimate the performance of the final model (with “best” parameters and hyperparameters)
using test data (not seen during training and validation phases)

This is the final performance of the model
— Application phase:

Apply the final model e.g.: y = 0.65 + 0.13X+ 1.9X? + 0.77X3 to real-world input data (a new
value of X not in the initial dataset) and predict output y

Predictive techniques: Supervised learning

] Training
Text, .
Documents, A Iarge numbgr of superwse@
Images, learning techniques are available
etc.

in Scikit-Learn (or Sklearn)

library installed with Anaconda

» Training phase is performed
using . fit () function

« Validation and testing phase
involve .predict () function

Machine
Learning
Algorithm

{ Labels
|

Feature @ .predict (X val)

New Text, Vector .predict (X test)

Document, | Expected y_val
Image, Label y_pred

etc.

Predictive
Model

Predictive techniques: Unsupervised learning

] Training
Text,
Documents,
Images,
etc.

New Text,

etc.

=)

Document,
Image,

Feature
Vector

X_train

Feature
Vectors d.,/
. X

O\
>
,<;9

Machine
Learning
Algorithm

Predictive
Model

or Cluster ID
or Better
Representation

In unsupervised learning techniques

available in Scikit-Learn (or Sklearn)

« Training phase (e.g. cluster
formation) is performed using
.fit () function

« Assigning new data into existing
clusters is performed by
.predict () function

)
’&6
/7

&

Likelihood

Deep Boltzmann Machine (DEM)

Machine Learning

Maive Bayes

Averaged One-Dependence Estimators (AODE)

|~

Bayesian Belief Network (BEN)

: Bayesian
- Al gorlthms Y Gaussian Naive Bayes
Deep Belief Networks (DBN) | _ / : : :
_ ~,_ Deep Learning / ' Multinomial Naive Bayes
Convolutional Neural Network (CNN) ¢ N f \ -
| \ / ' Bayesian Network (EN)
Stacked Auto-Encoders \ / ' _ _ _
' { Classification and Regression Tree (CART)
Random Forest ™, [Iterative Dichotomiser 3 (ID3)
GCradient Boosting Machines (GEM) | |
~ \ C4.5
_Boosting | " cs0
Bootstrapped Aggregation (Bagging) { Ensemble \ Decision Tree - _ _ _
adal { \ / Chi-sguared Automatic Interaction Detection (CHAID)
aBoost Y { ;
- \ ' Decision Stump
Stacked Generalization (Blending) /| Yoo / / -
| v / I"-\ Conditional Decision Trees
Gradient Boosted Regression Trees (GERT) Voo ! | M5
Radial Basis Function Network (REFN) Voo [/ S o _
N Voo f / Principal Component Analysis (PCA)
erceptron |
— | Neural Networks Voo f { Partial Least 5quares Regression (PLSR
Back-Propagation ¢ ~ | W W Y | I " Manoi
| —_— _ T | Sammon Mappin
Hopfield Network t Machine Learning Algorithms [~ — : 9 _
Ridge R i = T | Multidimensional Scaling (MDS)
idge Regression {7 T :
i ™ Ij [|\ \ ' Projection Pursuit
Least Absolute Shrinkage and Selection Operator (LASSO) | / { WA \ -
] ~, Regularization 'R \))) . Principal Component Regression (PCR)
Elastic Net | “_ Dimensionality Reduction J~ : . _
Least Angle R - LARS) | P ! . Partial Least Squares Discriminant Analysis
east Angle Regression - fo Y : — :
2 2 Cubi g P R | Mixture Discriminant Analysis (MDA)
Lbist / Loy
— / Vo | Quadratic Discriminant Analysis (QDA)
One Rule (OneR) | VA Vo |
-, Rule System { Vo ', Regularized Discriminant Analysis (RDA)
Zero Rule (ZeroR) / ' \

A
|
Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

Linear Regression
Ordinary Least Squares Regression (OLSR)

Stepwise Regression
Multivariate Adaptive Regression Splines (MARS)

Locally Estimated Scatterplot Smoothing (LOESS) Y,

Logistic Regression J-"

Regression

\ |
| . Instance Based |~

_ Flexible Discriminant Analysis (FDA)
1

', Linear Discriminant Analysis (LDA)
k-Mearest Neighbour (kKNN)
rd
[Learning Vector Quantization (L\VQ)

' Clustering |-
=

% 3elf-Organizing Map (SOM)
|
' Locally Weighted Learning (LWL)

p

k-Means

k-Medians

Expectation Maximization

I~
I|
A

Hierarchical Clustering

Machine Learning
Algorithms
in Python

get
more
data NO
YES samples
<100K
samples /

predicdpga
ves . category
YES

do you have
labeled
NO data

scikit-learn
algorithm cheat-sheet

classification

regression

0

NOT
WORKING YES

NO,

<100K
\ samples

few features
should be
important

YES

number of
categories

YES

clustering .
samples

NO

NOT
WORKING

NOT
WORKING

YES

e dimensionality
reduction

https://scikit-learn.org/stable/tutorial/machine learning map/index.html

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Evaluation metrics discussion

* The idea behind the squared (MSE) and the absolute error (MAE) Is
to avoid mutual cancellation of the positive and negative errors

— MSE and MAE have only non-negative values

* In MSE, error is squared => prediction error is being heavily penalized
— In case of data outliers, MSE will become much larger compared to MAE

— Based on the application, this property may be considered positive or negative:

For example, emphasizing large errors may be a desirable discriminating measure when
evaluating models

 MAE preserves the same units of measurement
* In MSE, the unit of measurement is squared

« RMSE is used then to return the MSE error to the original unit by
taking the square root of it, while maintaining the property of
penalizing higher errors

Istat bias

rm2 Istat*rm Istat2 rm

Scaling vs correlation

Correlation among original features, power and interaction terms
With Standard scaling

-10
T e . . -1.0
Without scaling o With MinMax scaling
= - 0.8
- 0.6 5. 06
04) 0.4
E-
0.2 0.2
0.0 E 0.0
-0.2 g -0.2
-0.4 . 0.4
E"
-0.6 -0.6
Istatz Istat*rm rm2 Istat2 Istat*rm rm2

* There is minimal correlation when
centering-based scalers (Standard,
Robust) are applied

» Source code is found here

Istat bias

rm2 Istat*rm Istat2 rm

Istat bias

rm2 Istat*rm Istat2 m

Istat2 Istat*rm rm2

With Robust scaling

Istat2 Istat*rm rm2

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_correlation.ipynb

Basic Types of Ensemble Learning

« Sequential Ensemble Learning (boosting)

— Key ideas:
base learners are dependent on the results from previous base learners

every subsequent base model corrects the prediction made by its predecessor fixing the
errors in it

overall performance can be gradually increased
— Cons: tends to overfit the training data
— Examples: AdaBoost, Stochastic Gradient Boosting, XGBoost, CatBoost

DATASET & ¢ DRS ER H’.i'\,'_,\\
e_o MODEL YR MODEL PY/A MODEL
00 g g 'RAN E oV g%y AN = o ;
o g0 > —p olg® — — - % —_—
®o_o0 0 ® o ¢ ® P
® o0 ® o©O e o0

PREDICTION

Basic Types of Ensemble Learning

- Parallel ensemble learning using homogeneous learners (also
called bagging)

— all base learners are homogeneous (same machine learning algorithm) and
execute in parallel on different random subsets of the original dataset

— no dependency between the base learners

— results of all base models are combined in the end (using averaging for
regression and voting for classification problems)

Averaging: every learner make a prediction (predicted value) for each data point, and
the final predicted value for that point is the average of all predicted values

Voting: every learner makes a prediction (votes) for each data point (row in dataset) to
which category should be assigned to and the final output prediction for that point is the
category that receives more than half (or the majority) of the votes

— See more here

— Examples: sklearn.ensemble.BaggingRegressor,
sklearn.ensemble.RandomForestRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Basic Types of Ensemble Learning

« Parallel ensemble learning using heterogeneous learners (also
called stacking)

— all base learners are heterogeneous (different machine learning algorithm)
and execute in parallel
Base Learners are trained using the available data

— meta learner combines predictions of base learners

Meta Learner is trained to make a final prediction using the Base Learners’ predictions
on the input data — base models’ predictions are used as input features to meta learner

— stacking obtains better performance results than any of the individual weak
learners

< crion 3
P -~
\
Data OV‘*
o
5
Qu

— Example: sklearn.ensemble.StackingRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

Random Forest Regression

A Random Forest is a bagging ensemble technique

» Performs both regression and classification tasks with the use of
multiple decision trees as base models

* The name "Random Forest” comes from the bootstrapping idea of
data randomization (training datasets for each tree taken from
random subsets of the Initial training dataset) and building multiple
Decision Trees (Forest)

« RandomForestRegressor class
— sklearn.ensemble.RandomForestRegressor
— More info here

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=randomforest#sklearn.ensemble.RandomForestRegressor

Bagging in detail

- Parallel Ensemble Learning of homogeneous learners:
Bootstrapping (resampling) => Aggregating => Bagging

1. To start with, let's assume you have some original data that you Training dataset: D

want to use as your training set (dataset D with N samples). You 00 N samples
want to have K base models in our ensemble. O.O.....Q N
2. In order to promote model variance, Bagging requires training ...O.. O Original Data
each model in the ensemble on a randomly drawn subset of the |..
training set. The number of samples in each subset is usually [l]
equal to the original dataset (N), although it can be smaller. 00000 || 00000 QOO®O®® | 5 iisirapping
: 00000 | 00000 00000
3. To create each subset, you need to use a bootstrapping
technique:
First, randomly pull a sample from your original dataset D and put it | FESSEEEE | | EEES m Aggregating

to your subset 1 E I [

Second, return the sample to D (this technique is called sampling Bagging
with replacement)

Third, perform steps (a) and (b) N (or less) times to fill your subset

Then perform steps (a), (b), and (c) K — 1 time to have K subsets for| | you are solving a Classification problem, you

_ each of your K base models _ o should use a voting process to determine the final
4. Train each of K base models on its subset, make predictions result. The result is usually the most frequent class

using test (unseen) dataset among K model predictions. In the case of
5. Combine (aggregate) the prediction of each sample (row) from | Regression, you should just take the average of
the test dataset and evaluate the final result for each sample the K model predictions.

Bagglng INn detail (sampling with replacement)

Training datasets (with 10 samples/rows each)

Original dataset 1 2 3 4 5 6 7 8 9 10
Base Model 1 dataset | 7 8 10 8 2 5 10 10 5 9
Base Model 2 dataset | 1 4 1 2 3 3 2
Base Model 3 dataset | 1 8 5 10 5 5 3
« Boostrapping process creates a new training dataset for each base

model

« Some samples (rows) of the initial training dataset can be selected
multiple times within a base model’s training dataset

« Build multiple base models — each one trained on its own dataset
« Use each base model to make a prediction using the test dataset

-+ Combine (average) predictions to provide the final ensemble
algorithm prediction

Feature scaling in gradient descent algorithms

* The algorithms work by iteratively updating the model parameters in
small steps, nudging them in the direction that minimizes the
prediction error.

« Sometimes your model won’t converge at all if you don’t scale your
features.

* This Is because the gradient descent algorithm will be jumping
around the parameter space, heavily influenced by the features with
the largest ranges.

* In cases where the features are already on a similar scale or when
using optimization algorithms that do not rely on gradients, feature
scaling might not have a significant impact on performance.

	Slide 1: EPL448: Data Mining on the Web – Labs 8
	Slide 2: Predictive modeling techniques
	Slide 3: Training / validation / test datasets
	Slide 4: Splitting datasets against overfitting
	Slide 5: When to split a dataset? Why?
	Slide 6: Best practices in a data science project
	Slide 7: Best practices in a data science project
	Slide 8: Predictive techniques: Supervised learning
	Slide 9: Predictive techniques: Unsupervised learning
	Slide 10: Regression
	Slide 11: Linear Regression (LR)
	Slide 12: Simple Linear Regression
	Slide 13: Multiple Linear Regression
	Slide 14: Linear Regression Methods
	Slide 15: Main assumptions for using Linear Regression
	Slide 17: Linear Regression: Get to know data
	Slide 18: Linear Regression: Testing assumptions
	Slide 19: Linear Regression: Testing assumptions
	Slide 20: Linear Regression: Prepare variable vectors
	Slide 21: Linear Regression: Linear Regressors
	Slide 22: Linear Regression
	Slide 23: Linear Regression: Splitting datasets
	Slide 24: Linear Regression: Model training
	Slide 25: Linear Regression: Making prediction
	Slide 26: Linear Regression: Testing assumptions
	Slide 28: Data rescaling/standardization
	Slide 29: Data rescaling/standardization
	Slide 30: When to rescale/standardize features?
	Slide 31: When to unskew features/target variable?
	Slide 32: Linear Regression: Target variable distribution
	Slide 33: Linear Regression: Standardize X / unskew y
	Slide 34: Linear Regression
	Slide 35: Linear Regression: Model evaluation
	Slide 36: Linear Regression: Evaluate model
	Slide 37: Linear Regression: Evaluate model
	Slide 38: Polynomial (or non-linear) regression
	Slide 39: Polynomial regression
	Slide 40: Polynomial regression: of which degree?
	Slide 41: How to find the right degree of the equation?
	Slide 42: Training Polynomial regression model using Linear Regressor
	Slide 43: Is rescaling/unskewing needed?
	Slide 44: Polynomial Regression: Boston Housing Dataset
	Slide 45: Data transformation
	Slide 46: Data transformation
	Slide 47: Feature Selection – Correlation matrix
	Slide 48: Feature Selection – Importance
	Slide 49: Feature Selection – Sequential Forward Selec
	Slide 50: Feature Selection
	Slide 51: Linear Regression on Boston dataset
	Slide 52: Linear Regression (with hyperparameters)
	Slide 53: Polynomial Regression (degree = 2)
	Slide 54: Polynomial Regression (degree = 2)
	Slide 55: Problem with dataset splitting
	Slide 56: K-folds Cross Validation
	Slide 57: k-folds Cross Validation
	Slide 58: GridSearchCV
	Slide 59: Exhaustive param search: GridSearchCV
	Slide 60: Pipeline
	Slide 61: Polynomial regression: Pipeline with GridSearchCV
	Slide 62: Polynomial regression: Pipeline with GridSearchCV
	Slide 63: Pipelines
	Slide 64: Pipelines with ColumnTransformer
	Slide 65: Pipelines with TranformedTargetRegressor
	Slide 66: Pipelines with TranformedTargetRegressor
	Slide 67: Support Vector Regression (SVR)
	Slide 68: Support Vector Regression (SVR)
	Slide 69: Support Vector Regression (SVR)
	Slide 70: Support Vector Regression (SVR)
	Slide 71: SVR with GridSearchCV
	Slide 72: Ensemble learning
	Slide 73: Is rescaling/unskewing needed?
	Slide 74: RandomForestRegressor with GridSearchCV
	Slide 75: Appendix
	Slide 76: Is validation dataset needed?
	Slide 77: Predictive modeling techniques
	Slide 78: Predictive modeling techniques
	Slide 79: Predictive techniques: Supervised learning
	Slide 80: Predictive techniques: Unsupervised learning
	Slide 81
	Slide 82
	Slide 83: Evaluation metrics discussion
	Slide 84: Scaling vs correlation
	Slide 85: Basic Types of Ensemble Learning
	Slide 86: Basic Types of Ensemble Learning
	Slide 87: Basic Types of Ensemble Learning
	Slide 88: Random Forest Regression
	Slide 89: Bagging in detail
	Slide 90: Bagging in detail (sampling with replacement)
	Slide 91: Feature scaling in gradient descent algorithms

