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Predictive modeling techniques

• Predictive modeling techniques help translate raw data into value

– Machine learning predictive techniques such as Support Vector Machines 

(SVMs), Decision trees, boosting methods, learn from data and build models

• Data + Predictive Modeling Technique → Predictive Model

– 3 phases to prepare a predictive model: Training – Validation – Test

• Split initial dataset into 3 smaller datasets

– Training dataset: The actual dataset used to train the model. The model 

sees and learns from this data.

– Validation dataset: Used to provide unbiased evaluation of model fit on 

testing dataset and fine-tune the model hyperparameters*. The model 

occasionally sees this data, but never “learns” from this.

– Test dataset: Used to provide unbiased evaluation of a final model. Only 

used once a model is completely trained (using training & validation datasets)
* Cannot be learned from data, during the training process.



Sq.m. Rooms Parking Price

Training / validation / test datasets

• During testing phase, predictive modelling technique sees both features (X_train) and the target (y_train) values

• During validation and testing phases, only features (X_val, X_test respectively) are given as input to predictive 

technique so as to predict the target values. Predictive model is evaluated on its effectiveness to correctly 

predict the target values by comparing the predicted with the original target values.

Sq.m. Rooms Parking Price

Predictive model



Splitting datasets against overfitting

• Training a predictive modelling technique and evaluating its 

performance on the same data a methodological mistake because 

may lead to:

– High accuracy on seen data

– Low accuracy (fail to predict / classify) on unseen data

• Splitting dataset into 3 parts (training, validation and testing 

datasets) can prevent overfitting

Over-fitting

Over-fittingUnder-fitting

Underfitting: model 

fails to capture 

underlying pattern in 

training data

Over-fitting: model 

learns training data 

too well but fails to 

generalize to new 

data



When to split a dataset? Why?

• Splitting the dataset into training, validation and test datasets should 

typically be one of the first steps in a data science project, before 

performing any data preprocessing and transformations

•  Why split the dataset early?

– Avoid data leakage: avoid passing information from test set to validation / 

training sets

• Scaling features using information from the entire dataset may lead towards modifying data 

(rows) that will end up in the training dataset from data that will end up in the “unseen” 

(test) set

– Realistic evaluation: test dataset should simulate new, truly unseen data

• Performing data imputing, data encoding, data transformation (scaling, standardizing, 

unskewing) and feature selection based on the training set alone ensures that test data are 

truly unseen and not involved as happens in a real-world scenario



Best practices in a data science project

• Initial data exploration

– Before splitting the data, perform basic exploratory data analysis (EDA) to 

understand the structure of the dataset

– This includes checking for missing values, understanding data types and 

feature distributions, and getting an initial sense of the data

• Splitting the data

– Split the data into training (,validation) and test sets

• validation not needed if Cross Validation process will be used (we discuss it later)

• Preprocessing and Transformation

– After splitting, perform all preprocessing steps (such as scaling, 

normalization, encoding, and imputation) separately on the training set

• We can keep different versions of the training dataset: original & with transformations

– Fit (train) the preprocessing tools (like scalers and encoders) on the training 

data and then apply these fitted tools to the validation and test sets.



Best practices in a data science project

• Feature Engineering and Selection

– Conduct feature engineering (feature selection / extraction) based solely on 

the training data

– Apply the same feature transformations to the validation and test sets

• Model Training and Tuning

– Train your models using the training set

– Use the validation set to tune hyperparameters and select the best model

– Finally, evaluate the model on the test set to get an unbiased estimate of its 

performance



Predictive techniques: Supervised learning

• You have input features (X) and an output target variable (y) available 

and use a predictive modelling technique to build a model that 

captures the relationship between input and output data

– Majority of predictive techniques are supervised learning techniques

• Supervised learning problems can be further grouped into:

– Classification problems: A classification problem is when the output variable 

(y) is a category, such as “disease” or “no disease” (binary classification) and 

“red” or “blue” or “green” (multiclass classification)

• Popular techniques: Logistic Regression (binary classification), Linear Discriminant 

Analysis (LDA), K-Nearest Neighbors (KNN), Decision Trees (Random Forest), Support 

Vector Machine (SVM), Naïve Bayes, Gaussian Naïve Bayes, XGBoost, AdaBoost

– Regression problems: A regression problem is when the output variable (y) is 

a numerical value, such as “price” or “weight”

• Popular techniques: Linear Regression, Polynomial Regression, Support Vector 

Regression (SVR), Random Forest Regression, XGBoost Regression, AdaBoost Regression



Predictive techniques: Unsupervised learning

• You only have input vars (X) and no corresponding output variable (y)

– no mapping from input to output data

• Goal: model the underlying structure or distribution in the data in 

order to learn more about the data, extract insights

• Unsupervised learning problems can be further grouped into:

– Clustering problems: A clustering problem is where you want to discover the 

inherent groupings in the data, such as grouping customers by purchasing 

behavior.

• Popular techniques: k-means

– Association problems: An association rule learning problem is where you 

want to discover rules that describe large portions of your data, such as people 

that buy X1 also tend to buy X2

• Popular techniques: Apriori algorithm



Regression

• The process of estimating the relationships between a dependent 
variable (or target variable) y which takes numerical values and one 

or more independent (or input) variables (called features) X
• Example: Estimate the relationship between the house price (dependent var) and the 

house area in square meters (independent var)

• House area is independent variable because we cannot mathematically determine it. But, 

we can determine / predict house price value based on the house area.

• Some regression algorithms:

– Linear Regression (simple, multiple) – first degree equation

– Polynomial Regression – higher degree (2nd, 3rd, …) equations

– Support Vector Regression

– Ensemble Regression (e.g. Random Forest Regressor, Ada Boost Regressor)



Linear Regression (LR)

• Linear regression assumes that the relationships between the 

dependent (target) variable and the independent variables are linear

• Therefore, the dependent variable y can be calculated from a linear 

combination of the independent variables (X):

• Vector β involves initially unknown coefficients (parameters), which 

will be evaluated using a training dataset with values for target 

variable and features

𝑦 = 𝛽0 + ෍

𝑗=1

𝑝

𝛽𝑗 ∗ 𝑋𝑗 = 𝛽0 + 𝛽1 ∗ Χ1 + 𝛽2 ∗ Χ2 + ⋯



• Simple Linear regression: one independent input variable X: 

y = 𝛽0 + 𝛽1Χ +∈

– Goal: Fit the best intercept line (evaluate β0 and β1) that passes 

between all data points that minimizes the error

– y : Dependent variable (target variable)

– X : Independent variable (feature)

– β0 : Intercept (the target value when X = 0)

– β1 : Slope. Explains the change in Y when X 

changes by 1 unit = Δy/ΔΧ

– ∈ : Error. This represents the residual value, 

i.e. the difference between the observed and

the fitted (predicted) value

Simple Linear Regression

𝛽1

X     y

0.10  1.51

0.15  0.92

0.17  1.96

0.22  0.53

0.27  0.38

𝛽0



Multiple Linear Regression

• Multiple Linear regression: more than one independent variables Xi 

in the linear function: 

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +𝛽3 𝑋3 + ⋯ 𝛽𝑛𝑋𝑛 +∈

In this image n=2

Two independent variables: 

• Weight

• Horsepower

Dependent variable:

• MPG (miles per gallon)

Regression finds the best-fitting 

plane that passes through all 

points minimizing the error



1. Ordinary least squares  (OLS) is a non-iterative method that fits a 

model (line or plane) such that the 

sum of squared error is 

minimized.

2. Gradient descent finds the 

linear model coefficients

iteratively

• When the β coefficients are estimated, the equation can be used to 

predict the target value y given an input X vector

Linear Regression Methods



Main assumptions for using Linear Regression

• Linear relationships

– between each independent variable and the dependent variable

• can best be tested with scatter plots / pair plots

• No or little multicollinearity

– Low correlation between two or more independent variables – can be checked 

with correlation matrix (visualized by heat map)

• If multicollinearity is discovered, the analyst may drop one of the two variables that are 

highly correlated, or simply leave them in and note that multicollinearity is present.

• There are some techniques to remove multicollinearity such as centering each correlated 

variable (remove mean value from all observed values of each variable) -- StandardScaler

• Normality of residuals

– LR requires the residuals (error terms) of the model to be normally distributed, 

with mean equal to 0 – can best be checked with a histogram of the residuals; 

normality test functions are also available



Linear Regression: Get to know data
import pandas as pd

import numpy as np

df = pd.read_csv('Advertising.csv')

df.head()

df.describe()

Dataset description: Sales (in 

thousands of units) for a particular 

product based on the advertising 

budgets (in thousands of dollars) 

for TV, radio, and newspaper 

media.

Independent variables

(features)

target 

variable

https://www.cs.ucy.ac.cy/courses/DSC510/data/Advertising.csv


Linear Regression: Testing assumptions

• Linearity

sns.pairplot(df,x_vars=["TV","Radio","Newspaper"],y_vars= "Sales",kind="reg")

By looking at the plots we can see that none of the independent variables has an accurately linear 

relationship with Sales but TV and Radio do still better than Newspaper which seems to hardly have any 

specific shape. So, it shows that a linear regression fitting might not be the best model for it. A linear model 

might not be able to efficiently explain the data in terms of variability, prediction accuracy etc.



Linear Regression: Testing assumptions

• Multicollinearity

– Independent variables seem to be uncorrelated (there is no correlation 

between independent variables > 0.75)

df_features = df[["TV", "Radio", "Newspaper"]]

sns.heatmap(data=df_features.corr())

plt.show()



• Normality of residuals require us to perform the regression and 

calculate the residuals (error terms)

Linear Regression: Prepare variable vectors

# get the values of the dataframe that will be used in the regression model

dataset = df.values

# extract the features (independent variables)

X = dataset[:,1:4]

print(X[0:10])

# extract the dependent (target) variable

y = dataset[:,4]

print(y[0:10])

[[230.1  37.8  69.2]

 [ 44.5  39.3  45.1]

 [ 17.2  45.9  69.3]

 [151.5  41.3  58.5]

 [180.8  10.8  58.4]

 [  8.7  48.9  75. ]

 [ 57.5  32.8  23.5]

 [120.2  19.6  11.6]

 [  8.6   2.1   1. ]

 [199.8   2.6  21.2]]

[22.1 10.4  9.3 18.5 12.9  7.2 11.8 13.2  4.8 10.6]



Linear Regression: Linear Regressors
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

# ALTERNATIVE REGRESSOR

from sklearn.linear_model import SGDRegressor

sgdr = SGDRegressor()

Non standardized independent values

LinearRegression() class uses 

Ordinary Least Squares (OLS) 

solver from scipy

SGDRegression object uses 

stochastic gradient descent 

method

• SGDRegressor uses the iterative method gradient descent to 

estimate the coefficients

• The main reason why gradient descent could be preferred for 

linear regression instead of the LinearRegressor is the 

computational complexity: it's computationally cheaper (faster) to 

find the solution using the gradient descent in datasets with large 

number of features.



Linear Regression
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

Non standardized independent values

[[230.1  37.8  69.2]

 [ 44.5  39.3  45.1]

 [ 17.2  45.9  69.3]

 [151.5  41.3  58.5]

 [180.8  10.8  58.4]

 [  8.7  48.9  75. ]

 [ 57.5  32.8  23.5]

 [120.2  19.6  11.6]

 [  8.6   2.1   1. ]

 [199.8   2.6  21.2]]

[22.1 

 10.4

  9.3 

 18.5 

 12.9   

  7.2 

 11.8

 13.2  

  4.8

 10.6]

X_train

X_2

y_train

y_2

Training data size: 80%

Remaining data (X_2, y_2) size: 20%



Linear Regression: Splitting datasets
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, train_size=0.50)

Non standardized independent values

[[230.1  37.8  69.2]

 [ 44.5  39.3  45.1]

 [ 17.2  45.9  69.3]

 [151.5  41.3  58.5]

 [180.8  10.8  58.4]

 [  8.7  48.9  75. ]

 [ 57.5  32.8  23.5]

 [120.2  19.6  11.6]

 [  8.6   2.1   1. ]

 [199.8   2.6  21.2]]

[22.1 

 10.4

  9.3 

 18.5 

 12.9   

  7.2 

 11.8

 13.2  

  4.8

 10.6]

X_train

X_test

y_train

y_test

Validation data size: 50% of remaining

Testing data size: 50% of remaining

X_val y_val
Training data size: 80%

Validation data size: 10% 

Testing data size: 10%



Linear Regression: Model training
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, train_size=0.50)

# train model (Fit linear model) and evaluate model β coefficients

model = legr.fit(X_train, y_train)

# print model intercept (β0)

print("β0 =", model.intercept_)

# print model coefficients

print("[β1,β2,β3] =", model.coef_)

Non standardized independent values

β0 = 2.99489303049533

[β1,β2,β3] = [ 0.04458402  0.19649703 -0.00278146]

Model after training: y = 2.99 + 0.044*x1 + 0.196*x2 - 0.0027*x3



Linear Regression: Making prediction
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, train_size=0.50)

# train model (Fit linear model) and evaluate model β coefficients

model = legr.fit(X_train, y_train)

# print model intercept (β0)

print("β0 =", model.intercept_)

# print model coefficients

print("[β1,β2,β3] =", model.coef_)

# estimate residuals

# predict

y_pred = model.predict(X_val)

# residuals is the differences between real y values (y_val) and predicted y values

residuals = y_val - y_pred

print("Residuals:", residuals[:10])

Non standardized independent values

Residuals: [0.11256448  2.16206142 -9.18318566  

0.21444367  0.62679197 -1.90974587

 -2.03802209  0.9477193   0.30597666  0.03544328]



Linear Regression: Testing assumptions

• Normality of residuals

– Residuals (error terms) of unstandardized input 

does not seem to be normally distributed

– Run normality check to test whether the 

residuals differ from a normal distribution

# computing the p-value for the null-hypothesis 

that this distribution is a normal distribution

from scipy import stats

_, p = stats.normaltest(residuals)

# p-value of 0.05 or greater means that the 

distribution is a normal distribution

print(p) # => 3.463801353587156e-10, residuals 

deviate from normal distrib.

Non standardized independent values



Data rescaling/standardization

• The values of β coefficients represent the influence of each input 

feature on the target variable: 

– When regression is used for explaining a phenomenon, i.e. how input features 

influence the output y, the values of β coefficients can shed light

• E.g. if β1 > β2 one might say Χ1 has higher impact than X2 on y since a small change in 

X1 results in a comparably large effect on y

– BUT we cannot directly compare the size of the various β coefficients if the 

input variables are measured on different scales

• By rescaling/standardizing variables, coefficients become directly 

comparable to one another, with the largest coefficient indicating 

which independent variable has the greatest influence on the 

dependent variable

– We can rescale input features using MaxMinScaler, StandardScaler, 

RobustScaler shown in Lab 4

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +𝛽3 𝑋3 + ⋯ 𝛽𝑛𝑋𝑛 +∈



Data rescaling/standardization

• Min-max scaler rescales each feature individually into a given 

range, e.g. [0, 1]

• Standard scaler rescales each feature individually to make values 

have zero mean (𝜇 = 0) and unit variance (𝜎2 = 1)

– Assumes that feature fits a Gaussian distribution (bell curve) with a well-

behaved mean and standard deviation

– Centers data around zero

• Robust scaler rescales each feature individually to make values 

have zero median (median=0) and unit interquartile range (IQR=1)

– Center data around zero

– Robust to outliers

• None of these techniques changes the distribution of features, nor 

have an impact on p-value (used in the normality test)



When to rescale/standardize features?

• When regression is used for making β coefficients directly 

comparable to one another and reveal the influence of each feature 

on target thus making it easy to present effects to non-statisticians

• Technically, feature scaling does not make a difference in linear 

regression, however, can be used in gradient descent-based 

algorithms (such as SGDRegressor used in linear regression) 

feature scaling is needed to speed up the process of convergence 

(see more details here)



When to unskew features/target variable?

• Unskewing transformations attempt to make long-tail distribution of a 

variable symmetric as Gaussian/normal (bell-shaped) distribution

– Unskewing transformations: BoxCox, Yeo-Johnson, Sqrt, Log

• Linear regression (OLS method) does not require feature and target 

variable distributions to be normal but requires normality of residuals

– But, in the presence of highly skewed target 

variable, the trained predictive model tends to 

underestimate values under the long-tail area 

and to overestimate values under the peak 

where the majority of values lay



Linear Regression: Target variable distribution

• We prefer distribution of target variable to be symmetric (unskewed)

=> predictive algorithm will learn all sales values without bias

• Distribution plot of the target value: right skewed (long tail to the right)

Distribution is skewed (not symmetrical) -- that it has a higher number of data points having low values, i.e., products 

with less Sales. So, when we train our model on this data, it will perform better at predicting the Sales of products with 

lower Sales as compared to those with higher Sales ➔ Solution: Unskew target variable (See Lab4)

import seaborn as sns

# distribution plot of the target variable

sns.displot(y_train, kde=True)

# computing the p-value for the null-hypothesis that 

this distribution is a normal distribution

from scipy import stats

_, p = stats.normaltest(y_train)

# p-value of 0.05 or greater means that the distribution 

is a normal distribution

print(p) # => 0.039750209255936864, not normal distrib.



from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

# train scaler & apply transf on training set

X_train_scaled = sc.fit_transform(X_train)

print(X_train_scaled[0:10])

# apply scaler on validation and test sets

X_val_scaled = sc.transform(X_val)

X_test_scaled = sc.transform(X_test)

# Unskew the target variable values

# Apply box-cox on training dataset to 

# estimate λ parameter

y_train_scaled, lambda_bc = boxcox(y_train)

print(y_train_scaled[0:10])

# apply transformation on y validation

y_val_scaled = boxcox(y_val, lambda_bc)

y_test_scaled = boxcox(y_test, lambda_bc)

[[-1.34155345  1.0355176   1.65941078]

 [-1.4053143   0.08249594 -1.30629738]

 [-0.08995151  0.40243892 -0.81980897]

 [ 0.69761311 -0.18979597 -0.90868666]

 [ 0.76609699  0.01442296  1.28518893]

 [-0.56461564  0.42286082 -1.01627544]

 [-1.67570755 -1.44914602 -1.36243065]

 [-1.57770476  1.38268978  2.77272078]

 [-0.29304164  0.91979354  2.29558792]

 [-0.54218127 -1.20408331  0.19994556]]

[4.79407796 4.35326964 6.0707102  6.32143636 

6.64564903 5.78373694 2.45296201 4.06788525 

6.32143636 4.66122092]

Linear Regression: Standardize X / unskew y

Transformed vector

Evaluated lambda (λ) value

Estimate the parameter 𝜆 on the training data set, then use the estimated value to 

apply the transformation to the training and test data set to avoid data leakage

𝜆 parameter will also used in reverse BoxCox transformation



Linear Regression
# create a new model to be trained on scaled data

lregr_scaled = LinearRegression()

# train model (Fit linear model) and evaluate model β coefficients

model_scaled = lregr_scaled.fit(X_train_scaled, y_train_scaled)

# print model intercept

print("β0 =", model_scaled.intercept_)

# print model coefficients

print("[β1,β2,β3] =", model_scaled.coef_)

# estimate residuals

# predict and estimate residuals

y_pred_scaled = model_scaled.predict(X_val_scaled)

Standardized independent values

β0 = 5.719657352358076

[β1,β2,β3] = [1.1333148   0.80643841 -0.01058377]

• Standardization changes the interpretation of coefficients.

• Reveals the “importance” (influence) of each independent variable in predicting the dependent variable.

• TV has the highest coefficient, thus can be inferred that it is the most important factor for increasing sales.

"TV", "Radio", "Newspaper"



Linear Regression: Model evaluation

• Model evaluation is a core part of building an effective machine 

learning model

• Evaluation metrics provide a measure of how good a model 

performs and how well it approximates the relationship between the 

dependent variable and the independent variables

• Some regression evaluation metrics: 

– MSE: Mean Squared Error

• Error is squared: Large prediction errors are penalized

– MAE: Mean Absolute Error

• Does not penalize large prediction errors

– RMSE: Root Mean Squared Error

– R-squared (R2): a statistical measure of how close the data are to the fitted 

regression line on a convenient 0-1.0 scale (0: poor fitting, 1: perfect fitting)
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n = number of data points

      = observed value i

  = predicted value i



Linear Regression: Evaluate model

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

# prediction on validation data

# Model trained on unstandardized features and non-transformed target values

y_pred = model.predict(X_val)

print(y_pred[0:10])

# Mean Squared Error (MSE)

MSE = mean_squared_error(y_val, y_pred)

# Root Mean Squared Error (RMSE)

RMSE = np.sqrt(MSE)

r2 = r2_score(y_val, y_pred)

print("MSE:", MSE, ", RMSE:", RMSE , ", R2:", r2)

[15.48743552  6.53793858 10.78318566 11.58555633 21.17320803 

15.10974587  18.13802209  7.4522807  12.29402334 10.46455672]

MSE: 7.289025693003447 , RMSE: 2.699819566749498 , R2: 

0.7703057423991149

Non standardized independent values



Linear Regression: Evaluate model
# prediction on validation data

# Model trained on standardized features and (box-cox) transformed target values

y_pred_scaled = model_scaled.predict(X_val_scaled)

• Model performance in terms of R2 seems worse than without scaling 

but predicted values for Sales (y_pred_scaled) and validation values 

for Sales (y_val_scaled) are box-cox transformed; not directly 

comparable with original values

• Revert to original scale using inverse box-cox and measure error

• R2 score is higher than before we had a model trained on non-
transformed data – better performance with scaling and unskewing 

MSE: 1.0787997132391625 , RMSE: 1.0386528357633085 , 

R2: 0.6630640925730389

y_pred_unscaled = inv_boxcox(y_pred_scaled, lambda_bc)

MSE: 6.010514707137693 , RMSE: 2.451635108889105 , 

R2: 0.8105946155766224

Standardized independent values Unskewed target values

MSE_unscaled = mean_squared_error(y_val, y_pred_unscaled)

RMSE_unscaled = np.sqrt(MSE_unscaled)

r2 = r2_score(y_val, y_pred_unscaled)

MSE_scaled = mean_squared_error(y_val_scaled, y_pred_scaled)

RMSE_scaled = np.sqrt(MSE_scaled)

r2 = r2_score(y_val_scaled, y_pred_scaled)



Polynomial (or non-linear) regression

• When non-linear relationship (curve) is observed between dependent 

and independent variables 

• Polynomial Regression comes to the play which predicts the best fit 

that follows the pattern (curve) of the data, as shown in the pic below:



Polynomial regression

• Relationships between the independent variable(s) x and the 

dependent variable y are modelled as an nth degree polynomial in x

• Example (for one independent variable X): 

– quadratic model (2nd degree) : y = 𝛽0 + 𝛽1Χ + 𝛽2X2 +∈

– cubic model (3rd degree) : y = 𝛽0 + 𝛽1Χ + 𝛽2X2 + 𝛽3X3 +∈

• Predictive performance of the model tends to increase (i.e. error is 

getting lower) as we increase the degree of the model



Polynomial regression: of which degree?

• Increasing the degrees of the model also increases the risk of over-

fitting the data

• The degree of the polynomial to fit is a hyperparameter that cannot 

be inferred while fitting the machine to the training set because it 

needs to be set prior the learning phase

1st degree polynomial 4th degree polynomial 20th degree polynomial



How to find the right degree of the equation?

• In order to find the right degree for the model to prevent over-fitting 

or under-fitting, we can use any of the two approaches below:

– Forward Degree Selection:

• Start with a model of degree=1 and at each step gradually increase the model’s degree 

until the best possible model (e.g. that minimizes MSE, RMSE) is reached

– Backward Degree Selection:

• Start with model of a large degree and at each step gradually decrease the model’s 

degree until the best possible model is reached

– At each step:

• Train the model using the training dataset

• Predict the target value using the validation dataset 

• Evaluate the performance of the model using any evaluation measure (MSE, RMSE, R2)

– At the end, when the best model is chosen, evaluate its final performance 

by predicting the target value using the testing dataset.



Training Polynomial regression model using Linear Regressor

• Let’s say we have dataset of one input feature, and we need to build a 

polynomial regression model of 3rd degree (cubic model) 

– y = 𝛽0 + 𝛽1Χ + 𝛽2X2 + 𝛽3X3

• Polynomial regression model can be trained using linear regressor 

(LR) since LR doesn’t know that X2 and X3 are the square of X and 

the cube of X respectively, it just thinks they are another features

– Prior running LR we expand the dataset, i.e. beyond the column X of the 

dataset, we create the extra columns X2 and X3

• The unknown parameters to be estimated after training are β0, β1, β2, β3

• In a two-feature dataset X1, X2

– 2nd degree polynomial model : y = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1
2 + 𝛽4𝑋1𝑋2 + 𝛽5𝑋2

2

• You apply linear regression for five inputs: 𝑥₁, 𝑥₂, 𝑥₁², 𝑥₁𝑥₂, and 𝑥₂²

• Result of regression: the values of six parameters β0, β1, β2, β3, β4, β5

Interaction term



Is rescaling/unskewing needed?

here

• While creating power terms (e.g. 𝑋1
2 , 𝑋1

3), if X1 is not centered first 

(using StandardScaler or RobustScaler), the squared and cubic 

terms will be highly correlated with X1 

• While creating interaction terms (e.g. 𝑋1𝑋2), if both X1 and X2 are 

not centered first, some amount of collinearity will be induced, i.e. 

𝑋1𝑋2 will be correlated with X1 and X2

• Both situations can negatively affect the estimation of the β 

coefficients, therefore centering can be applied on all input features 

prior creating power and interaction terms (see here)

• Feature and target variable distributions are not required to be 

Gaussian, but unskewing transformation is generally recommended 

if distributions are heavily skewed



Polynomial Regression: Boston Housing Dataset

• Dataset: 506 houses by 13 features 

• Objective: predict house prices
import numpy as np

import matplotlib.pyplot as plt 

import pandas as pd  

import seaborn as sns

boston = pd.read_csv('Boston.csv')

boston.head()

# extract features and target variables

X = boston.drop(columns=['medv'])

y = boston['medv']

# split to training, validation and test dataset (80% / 10% / 10%)

X_train, X_2, y_train, y_2 = train_test_split(X, y, random_state = 5, train_size = 0.8)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, random_state = 5, train_size = 0.5)

https://www.cs.ucy.ac.cy/courses/DSC510/data/Boston.csv


• Feature standardization and rescaling do not improve the predictive 

power of the model when using linear regressors

• Target variable transformations (such as Box Cox, Yeo-Johnson 

when skewness is apparent) can improve the model predictive power

Data transformation

# distribution of the target values

sns.displot(y_train, kde=True)

plt.show()

# statistical test

# p-value >= 0.05 means that the 

distribution is a normal distribution

from scipy import stats

_, p = stats.normaltest(y_train)

print(p) # => 1.76 e-20

Distribution is skewed (not symmetrical): The mean is 

around 20 and the first part already looks quite like a normal 

distribution. But there is a large right tail of higher MEDV 

values. This could lead to the problem, that the model better 

predicts the MEDV values around the mean but is quite bad 

at predicting the MEDV values from the right tail. This is 

because most of the time the model sees values around the 

mean and is therefore biased towards these MEDV values. 

➔ Solution: Unskew target variable (See Appendix)



Data transformation

• Here, we use boxcox transformation

• Distribution of the transformed target 

variable

– This distribution already looks quite similar to 

a normal distribution and achieves a p-value 

of 0.13, which is larger than 0.05. Therefore, 

we can say that the distribution approaches a 

normal distribution

# y - transformation (box cox)

from scipy.stats import boxcox

y_train_bc, lambda_bc = boxcox(y_train)

_, p = stats.normaltest(y_train_bc)

print(p) # => 0.13691571809545577

sns.displot(y_train_bc, kde=True)

Transformed vector

Selected lambda (λ) value

(λ value can be used in 

reverse Box Cox transf.) 



• Create correlation matrix on the 

training dataset 

• Observations:

– As we can see, only the features rm, 

and lstat are highly correlated with 

the output variable medv_boxcox

– Avoid using high correlated features 

together to avoid multi-collinearity

• rad / tax are strongly correlated

• dis / indus / age are strongly correlated

Feature Selection – Correlation matrix



# Feature Importance using ExtraTreeClassifier

from sklearn.ensemble import GradientBoostingRegressor

# Build an estimator and compute the feature importances

estimator = GradientBoostingRegressor(n_estimators=100, random_state=0)

estimator.fit(X_train, y_train_bc)

# Lets get the feature importances. 

# Features with high importance score higher.

importances = estimator.feature_importances_

Feature Selection – Importance

As we can see, the features lstat, and rm 

achieve the highest importance among all 

features for predicting the transformed 

target variable

Feature ranking:

1. feature 12 (0.562950)

2. feature 5 (0.172050)

3. feature 0 (0.101548)

4. feature 7 (0.062867)

5. feature 4 (0.034609)

6. feature 10 (0.027611)

7. feature 9 (0.012222)

8. feature 11 (0.010539)

9. feature 6 (0.010116)

10. feature 8 (0.003187)

11. feature 2 (0.001832)

12. feature 3 (0.000308)

13. feature 1 (0.000159)



from mlxtend.feature_selection import SequentialFeatureSelector as SFS

from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs

sfs = SFS(estimator, 

          k_features=(2,13), 

          forward=True, 

          floating=False, 

          scoring='r2',

          cv=10)

sfs = sfs.fit(X_train, y_train_bc)

plot_sfs(sfs.get_metric_dict(), kind='std_dev')

plt.title('Sequential Forward Selection')

plt.grid()

plt.show()

print('Selected features:',sfs.k_feature_idx_)

print('Prediction (CV) score:',sfs.k_score_)

Feature Selection – Sequential Forward Selec



Feature Selection

• For educational purposes, we keep two features (lstat and rm)

• We use both Linear and Polynomial regression to build a predictive 

model for predicting the target variable

We can see that lstat 

doesn’t vary exactly 

in a linear way.

X_train = X_train[['lstat', 'rm']]

X_val = X_val[['lstat', 'rm’]]

X_test = X_test[['lstat', 'rm']]



Linear Regression on Boston dataset

• Results using the initial dataset without transformations

• Results (on original scale) using Box Cox transformation on target 

variable

• Better performance is experienced when target variable is 

unskewed

Model performance on validation dataset

--------------------------------------

RMSE is 5.203457199881524

R2 score is 0.631266105649837

Model performance on validation dataset

--------------------------------------

RMSE is 4.770472127125568

R2 score is 0.6900784237549225



Linear Regression (with hyperparameters)

• No hyperparameters used thus far: lr = LinearRegression()

• If hyperparameters are to be used, they need to be set prior training

• Linear regression can set the fit_intercept hyperparameter

– The intercept term (often labeled the constant β0) is the expected mean value 

of Y when all X=0

– Default value is true: β0 is part of the model

• Set lr = LinearRegression(fit_intercept=False) and 

follow the process (training, prediction on validation dataset, model 

evaluation) using the transformed target variable

– Significant improvement of the model

Model performance on validation dataset (without intercept term)

----------------------------------------------------------------

RMSE is 3.8402695055646077

R2 score is 0.7991589449167994



Polynomial Regression (degree = 2)
from sklearn.preprocessing import PolynomialFeatures

poly_features = PolynomialFeatures(degree=2)

  

# transform training set features to higher degree features

X_train_poly = poly_features.fit_transform(X_train)

print(X_train[0:5])

print(X_train_poly[0:5])

  

# fit the transformed features to Linear Regression

poly_model = LinearRegression()

# train the model

poly_model.fit(X_train_poly, y_train_bc)

# transform validation set features to higher degree features

X_val_poly = poly_features.fit_transform(X_val)

# predicting on validation dataset

y_val_predict = poly_model.predict(X_val_poly)

# revert to original scale

y_val_predict_orig = inv_boxcox(y_val_predict, lambda_bc)  

lstat     rm

33   18.35  5.701

283  3.16  7.923

418  20.62  5.957

502  9.08  6.120

402  20.31  6.404

[[  1.        18.35       5.701    336.7225   104.61335   32.501401]

[  1.         3.16       7.923      9.9856    25.03668   62.773929]

[  1.        20.62       5.957    425.1844   122.83334   35.485849]

[  1.         9.08       6.12      82.4464    55.5696    37.4544  ]

[  1.        20.31       6.404    412.4961   130.06524   41.011216]]

convert the original features (X_train) into their 

higher order terms (X_train_poly) via the 

PolynomialFeatures class

lstat rm lstat2 rm2lstat * rm

Bias column: Feature in 

which all polynomial powers 

are zero. Acts as an intercept 

term in a linear model.



Polynomial Regression (degree = 2)
# evaluating the model on validation dataset

rmse_val_orig = np.sqrt(mean_squared_error(y_val, y_val_predict_orig))

r2_val_orig = r2_score(y_val, y_val_predict_orig)

  

print("Model performance on validation dataset (original scale")

print("-------------------------------------------")

print("RMSE is {}".format(rmse_val_orig))

print("R2 score is {}".format(r2_val_orig))
The model performance for the validation set

-------------------------------------------

RMSE of training set is 4.177886288872826

R2 score of training set is 0.7622928102676387

We can observe that the RMSE error is lower (thus better) when using polynomial regression 

as compared to linear regression with default hyperparameters but higher (thus worse) when 
compared to linear regression with fit_intercept=False. However, hyperparameter tuning 

needs to be performed to:

• explore different polynomial degrees beyond 2

• keep interaction_only features (e.g. remove lstat2 and rm2), default is False

• try without include_bias, default is True



Problem with dataset splitting

• Results shown thus far (RMSE, R2) depend on a particular choice 

(split) for testing and validation datasets to train and evaluate the 

model

– Based on the model’s performance on unknown (validation) data, we cannot 

determine if it is underfitting, overfitting, or “well-generalized”

• Solution: Repeat the process of randomly splitting data into subsets 

and average results => Cross Validation (CV)



K-folds Cross Validation

• Prior running Cross-Validation, split initial dataset into train/test

• Split train dataset randomly into k subsets called folds

• Repeat:

– Train model on k-1 folds 

– Use kth fold as validation dataset to measure model performance

• Measure score (e.g. RMSE, R2 for regression, accuracy, f1-score for classification)

• Until each of k folds has served as validation fold

• Combine (average) k recorded scores to estimate the 
error/accuracy of the model: cross-validation score

• Modify model hyperparameters and re-run cross validation
to find the best hyperparameter values

• Test dataset is used for the unbiased final evaluation of the model 
with the best model parameters and hyperparameters
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k-folds Cross Validation



GridSearchCV

• Cross validation (CV) process creates a series of train and validation 

splits to train and measure the predictive power of the model

• During training (within CV process), best values for model 

parameters are determined

• Model hyper-parameters cannot be directly learnt from the 

training phase; thus, they need to be set before the CV process

– When modifying a hyper-parameter, full CV process needs to be repeated

– When multiple hyper-parameters are involved in a model, finding the best 

combination of hyper-parameter values is a hard job

• Data encoding, transformation should be performed right after dataset 

splitting, within the CV process to avoid data leakage

• Best strategy to implement all these steps: GridSearchCV



Exhaustive param search: GridSearchCV

• GridSearchCV: Exhaustive search over a specified hyper parameter 

combination for an estimator (classifier / regressor)

• Grid of hyper-parameter values is specified with the param_grid list

– For example, for Polynomial Features estimator with degree, interaction_only 

and include_bias hyperparameters:

– specifies that two grids will be explored: 

• combination of degree values [1, 2, 3, 4] and interaction_only True/False, 

• combination of degree values [1, 2, 3, 4] and include_bias True/False

• Evaluates model for each combination using CV for a scoring metric

param_grid = [ 

    { "degree": [1, 2, 3, 4], "interaction_only": [True, False] },

    { "degree": [1, 2, 3], "include_bias ": [True, False] }

] 

grid = GridSearchCV(estimator, param_grid, cv=10, scoring = 'r2', n_jobs=-1)

grid.fit(X_train, y_train)

n_jobs parameter is provided by many sklearn estimators (e.g. in RandomForest, GridsearchCV, etc.). It accepts number of cores to use for parallelization. If value of -1 is 

given then it uses all cores. Therefore, I would like to recommend to you to use n_jobs=-1 where applicable to speed-up your computations.



Pipeline

• Recall that polynomial regression process involves 2 sequential 

steps:

– Create polynomial features

– Run linear regression

• Ιt is possible to create a pipeline combining these two steps 

(PolynomialFeatures and LinearRegression)

• A pipeline is used as estimator in GridSearchCV 



Polynomial regression: Pipeline with GridSearchCV
from sklearn.pipeline import Pipeline

from sklearn.model_selection import GridSearchCV

# split dataset to train/test 80% / 20%

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 5, train_size = 0.8)

# Define a pipeline involving PolynomialFeatures 

# and LinearRegression steps

pf = PolynomialFeatures()

lr = LinearRegression()

# name each step

pipe = Pipeline(steps=[("poly", pf), ("linear", lr)])

# Parameters of pipelines can be set using ‘__’ separated parameter names:

param_grid = [

   { "poly__degree": [1, 2, 3, 4, 5], "poly__interaction_only": [True, False], "poly__include_bias": [True, False] },
    { "poly__degree": [1, 2, 3, 4], "poly__interaction_only": [True, False], "poly__include_bias": [True, False], "linear__fit_intercept": [True, 

False] }

]

# make grid object for GridSearchCV and fit the dataset

search = GridSearchCV(pipe, param_grid, scoring = 'r2', cv=10, n_jobs=-1)

search.fit(X_train, y_train)

The sklearn scoring API always maximizes the score, so metrics which need to be 
minimized like RMSE are negated ("neg_root_mean_squared_error")



Polynomial regression: Pipeline with GridSearchCV
# print results

print(" Results from Grid Search " ) 

print("\n The best estimator across ALL searched params:\n", search.best_estimator_) 

print("\n The best score across ALL searched params:\n", search.best_score_) 

print("\n The best parameters across ALL searched params:\n", search.best_params_)

# Evaluate on the test set

best_model = search.best_estimator_

y_pred = best_model.predict(X_test)

# root mean square error of the model

rmse = (np.sqrt(mean_squared_error(y_test, y_pred)))

# r-squared score of the model

r2 = r2_score(y_test, y_pred)

print("\nModel performance on validation dataset")

print("--------------------------------------")

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

Results from Grid Search 

 The best score across ALL searched params:

 0.8239040045809777

 The best parameters across ALL searched params:

 {'linear__fit_intercept': False, 'poly__degree': 2, 

'poly__include_bias': True, 'poly__interaction_only': True}

Model performance on testing dataset

------------------------------------

RMSE is 3.220157338361434

R2 score is 0.8675577863835



Pipelines

• A pipeline accepts a list of estimators not only predictors but also data 

imputers, encoders, transformers to be applied prior training and 

evaluating a predictor

im = SimpleImputer(strategy="mean")

sc = StandardScaler()

preprocessing_pipeline = Pipeline([("imputer", im), ("scaler", sc)])

pf = PolynomialFeatures()

lr = LinearRegression()

training_pipeline = Pipeline([("poly", pf), ("linear", lr)])

# Pipelines can be attached to one another!

full_pipeline = Pipeline([("preprocessing", preprocessing_pipeline), 

("training", training_pipeline)])

param_grid = [

    { "training__poly__degree": [1, 2, 3, 4, 5], "training__poly__interaction_only": [True, False], 

"training__poly__include_bias": [True, False] },

    { "training__poly__degree": [1, 2, 3, 4], "training__poly__interaction_only": [True, False], "training__poly__include_bias": 

[True, False], "training__linear__fit_intercept": [True, False] }

]



Pipelines with ColumnTransformer

• By default, transformations are applied to all columns of feature set

• We can apply different transformations per column using 
ColumnTransformer. Example:

• For int-based features (e.g. chas & rad) we will apply most_frequent imputation strategy

• For rm and age we will apply mean imputation strategy followed by standard scaling

• For the remainder features do nothing

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler

from sklearn.impute import SimpleImputer

pipeline1 = Pipeline([('freq_imputer', SimpleImputer(strategy='most_frequent'))])

pipeline2 = Pipeline([('mean_imputer', SimpleImputer(strategy='mean')), ('scaler', 

StandardScaler())])

preprocessing_pipeline = ColumnTransformer([

    ('pipeline1', pipeline1, ['chas', 'rad']),

    ('pipeline2', pipeline2, ['rm', 'age']),

    # set remainder to passthrough to pass along all

    # the un-specified columns untouched to the next steps

    remainder='passthrough'

])



Pipelines with TranformedTargetRegressor

• Imputers, encoders and transformations are applied on input features

• Transformations (e.g. boxcox) on target variable can be applied using 
TranformedTargetRegressor

training_pipeline = Pipeline([

("poly", PolynomialFeatures()), 

("linear", LinearRegression())

])

training_pipeline = Pipeline([

    ('poly', PolynomialFeatures()), 

    ('linear', TransformedTargetRegressor(

        regressor=LinearRegression(),

        transformer=PowerTransformer(method='yeo-johnson')

    ))

])
'boxcox'

• TransformedTargetRegressor is a meta-

estimator that performs regression on a 

transformed target variable

• Regressor and Transformer are given 

as input

• PowerTransformer can be used to apply 

either boxcox or yeo-johnson

transformations. 
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and negative values

works with strictly 

positive values



Pipelines with TranformedTargetRegressor

• TranformedTargetRegressor with log transformation

training_pipeline = Pipeline([

("poly", PolynomialFeatures()), 

("linear", LinearRegression())

])

training_pipeline = Pipeline([

    ('poly', PolynomialFeatures()), 

    ('linear', TransformedTargetRegressor(

        regressor=LinearRegression(),

func=np.log, inverse_func=np.exp

    ))

])
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Support Vector Regression (SVR)

• Basic idea of support vector regression

– Find optimal hyperplane that approximates

the relationship between the input features

and the target variable.

• Hyperplane: A hyperplane is a decision 

surface that is used to predict the continuous output and fits the 

data points. Each data point is a row of the dataset. The data points 

on either side of the hyperplane that are closest to the hyperplane 

are called Support Vectors. These are used to plot the required 

surface that shows the predicted output of the algorithm.



Support Vector Regression (SVR)

• Decision Boundaries: These are the two surfaces that are drawn 

around the hyperplane at a distance of ε (epsilon). 

– SVR basically considers the points that are within the decision boundaries

– Best fit: the hyperplane that fits a maximum number of points.



Support Vector Regression (SVR)

• Kernel: A kernel is a set of mathematical functions that takes data 

as input and transform it into the required form. These are generally 

used for finding a better hyperplane in a higher dimensional space

– The most widely used kernels include linear, polynomial (poly), radial basis 

function (rbf) and sigmoid. By default, RBF is used as the kernel. Each of 

these kernels are used depending on the dataset.



Support Vector Regression (SVR)

• SVR important hyperparameters: 

– kernel: default value is rbf

– C: Regularization parameter. The strength of the regularization is inversely 

proportional to C. Must be strictly positive. Default value is 1.0

– epsilon: boundary threshold (ε), default value is 0.1

– gamma: kernel coefficient for rbf, poly and sigmoid, default value is ‘scale’

– degree: degree of the polynomial kernel (poly)

• In distance-based regression algorithms (such as Support Vector 

Regressor - SVR) that use (Euclidean or Manhattan) distances 

between data points, feature scaling is needed so that all the 

features contribute equally to the distance otherwise distance may 

be dominated by features with larger scales

• E.g. D𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋1, 𝑋2 = 3 − 1027 2 + 4 − 2123 2 distance is dominated by X2 values



SVR with GridSearchCV

• Exhaustive search over specified parameter values for an estimator
from sklearn.model_selection import GridSearchCV

# Define a pipeline involving Robust Scaler and SVR

pipe_svr = Pipeline(steps=[

        ("scaler", RobustScaler()), 

        ("svr", TransformedTargetRegressor(regressor=SVR(), 

         transformer=PowerTransformer(method='yeo-johnson')))

])

# parameter grid

parameter_grid = [

 {'svr__regressor__C': [1, 10, 100, 1000], 'svr__regressor__ kernel': ['linear']}, 

 {'svr__ regressor__ C': [1, 10, 100, 1000], 'svr__regressor__gamma': [0.001, 0.0001], 'svr__regressor__kernel': ['rbf']},

 {'svr__ regressor__C': [1, 10, 100, 1000], 'svr__regressor__degree': [1, 2, 3, 4, 5, 6], 'svr__regressor__ kernel': 

['poly']}] 

# make grid_SVC object for GridSearchCV and fit the dataset

grid_SVR = GridSearchCV(pipe_svr, parameter_grid, scoring = 'neg_root_mean_squared_error', n_jobs=-1) 

grid_SVR.fit(X_train, y_train)

# print results

print(" Results from Grid Search " ) 

print("\n The best estimator across ALL searched params:\n", grid_SVR.best_estimator_) 

print("\n The best score across ALL searched params:\n", -grid_SVR.best_score_) 

print("\n The best parameters across ALL searched params:\n", grid_SVR.best_params_)

The best estimator across ALL searched params:

 Pipeline(steps=[('scaler', RobustScaler()), ('svr', 

SVR(C=1000, gamma=0.001))])

 The best score across ALL searched params:

 0.7649632977483316

Model performance on validation dataset

--------------------------------------

RMSE is 2.9887655163221054

R2 score is 0.8859078053060818

SVR model does not outperform the polynomial model. It achieves slightly lower R2 score.



Ensemble learning

• Ensemble learning: train multiple ML algorithms (learners) and 

combine their predictions in some way

• Ensemble model is a model that consists of many base (weak) 

models which tends to make more accurate predictions than 

individual (weak) base models

• We have three kinds of ensemble methods using:

• Sequential Homogeneous Learners (Boosting), e.g. AdaBoostRegressor, 

GradientBoostingRegressor, LightGBM (installation) XGBoost (installation), 

CatBoost (installation)

• Parallel Homogeneous Learners (Bagging), e.g. BaggingRegressor, 

RandomForestRegressor

• Parallel Heterogeneous Learners (Stacking), e.g. StackingRegressor

For more info please see the Appendix

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://lightgbm.readthedocs.io/en/stable/
https://anaconda.org/conda-forge/lightgbm
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://anaconda.org/conda-forge/xgboost
https://catboost.ai/
https://anaconda.org/conda-forge/catboost
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html


Is rescaling/unskewing needed?

• Ensemble methods (Random Forest, XGBoost, AdaBoost) do not 

require feature rescaling to be performed as they are not sensitive 

to the variance in the data

• A skewed dependent variable is not necessarily a problem for 

ensemble methods per se – there are no assumptions as for 

example the normality of residuals (errors) that need to be met like 

in the linear model



RandomForestRegressor with GridSearchCV
from sklearn.ensemble import RandomForestRegressor

# Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 1000, num = 10)]

# Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]

max_depth.append(None)

# Minimum number of samples required to split a node

min_samples_split = [2, 5, 10]

# Minimum number of samples required at each leaf node

min_samples_leaf = [1, 2, 4]

# Method of selecting samples for training each tree

bootstrap = [True, False]

# Create the random grid

parameter_grid = {'rf__regressor__n_estimators': n_estimators,

               'rf__regressor__max_features': max_features,

               'rf__regressor__max_depth': max_depth,

               'rf__regressor__min_samples_split': min_samples_split,

               'rf__regressor__min_samples_leaf': min_samples_leaf,

               'rf__regressor__bootstrap': bootstrap}

pipe = Pipeline([("rf", TransformedTargetRegressor(regressor=RandomForestRegressor(), 

transformer=PowerTransformer(method='yeo-johnson')))])

# make grid_RF object for GridSearchCV and fit the dataset

grid_RF = GridSearchCV(pipe, parameter_grid, scoring = 'r2', n_jobs=-1) 

grid_RF.fit(X_train, y_train)

# print results

print(" Results from Grid Search " ) 

print("\n The best estimator across ALL searched params:\n", grid_RF.best_estimator_) 

print("\n The best score across ALL searched params:\n", grid_RF.best_score_) 

print("\n The best parameters across ALL searched params:\n", grid_SVR.best_params_)

The best parameters across ALL searched params:

 {'rf__regressor__bootstrap': False, 

'rf__regressor__max_depth': 60, 

'rf__regressor__max_features': 'sqrt', 

'rf__regressor__min_samples_leaf': 1, 

'rf__regressor__min_samples_split': 2, 

'rf__regressor__n_estimators': 377}

Model performance on testing dataset

------------------------------------

RMSE is 2.8937476393967922

R2 score is 0.8930468561703625

Slightly better results than SVR model but 

slightly worse than the polynomial model.

Warning: This may run several minutes!!
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Is validation dataset needed?

• While it is possible to split your dataset into just training and testing 

sets, incorporating a validation set or using cross-validation is 

generally recommended for model tuning and selection.

• Use Direct Train-Test Split

• When you have a large enough dataset that ensures the training and test 

sets are sufficiently representative of the entire dataset.

• When you are primarily interested in a quick evaluation and you are not 

performing hyperparameter tuning

• Use Train-Validation-Test Split

• When you want to tune hyperparameters and select the best model 

configuration before evaluating the final performance on a test set.

• This approach provides a dedicated validation set for model selection and 

tuning, while keeping the test set strictly for final evaluation.



Predictive modeling techniques

1. Learning/training phase: 

• Train data used to train a predictive modelling technique & create a model

– model represents what was learned by a machine learning algorithm

• Example: 

– Dataset: given input variable X we want to evaluate the output y

– Predictive modelling technique to train: use a Polynomial equation and try to fit data 

(find the “best curve” that passes between points): y = β0 + β1Χ + β2Χ
2

» Equation parameters: β0, β1, β2 will be estimated during training 

» Equation hyperparameter: degree of the polynomial function (configured prior training)

– The outcome of training phase can be the model e.g.: y = 0.45 + 0.7X+ 1.2X2

X     y

0.10  1.51

0.15  0.92

0.17  1.96

0.22  0.53

0.27  0.38
X

y



Predictive modeling techniques

2. Validation phase

• Validation data used to make predictions and measure the performance (e.g. error

between real and predicted target values) of the model and to tune hyperparameters

• Example: 

– After measuring the performance of the quadratic (2nd degree) model, change the degree of the 

polynomial equation e.g. to 3, re-run on training (phase) data to create a new cubic (3rd degree) 

model and measure the performance of the new model on validation data – repeat by changing 

the degree until the best model (with best performance, e.g. lower error) is achieved 

3. Testing phase

• Estimate the performance of the final model (with “best” parameters and hyperparameters)  

using test data (not seen during training and validation phases)

• This is the final performance of the model

– Application phase: 

• Apply the final model e.g.: y = 0.65 + 0.13X+ 1.9X2 + 0.77X3 to real-world input data (a new 

value of X not in the initial dataset) and predict output y



Predictive techniques: Supervised learning

.predict(X_test)

X_train

y_train

y_val

y_pred

A large number of supervised 

learning techniques are available 

in Scikit-Learn (or Sklearn) 

library installed with Anaconda

• Training phase is performed 
using .fit() function

• Validation and testing phase 
involve .predict() function

.predict(X_val)



Predictive techniques: Unsupervised learning

X_train
In unsupervised learning techniques 

available in Scikit-Learn (or Sklearn) 

• Training phase (e.g. cluster 

formation) is performed using 
.fit() function

• Assigning new data into existing 

clusters is performed by 
.predict() function



Machine Learning 

Algorithms



Machine Learning 

Algorithms

in Python

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html


Evaluation metrics discussion

• The idea behind the squared (MSE) and the absolute error (MAE) is 

to avoid mutual cancellation of the positive and negative errors

– MSE and MAE have only non-negative values

• In MSE, error is squared => prediction error is being heavily penalized

– In case of data outliers, MSE will become much larger compared to MAE

– Based on the application, this property may be considered positive or negative: 

• For example, emphasizing large errors may be a desirable discriminating measure when 

evaluating models

• MAE preserves the same units of measurement

• In MSE, the unit of measurement is squared

• RMSE is used then to return the MSE error to the original unit by 

taking the square root of it, while maintaining the property of 

penalizing higher errors



Scaling vs correlation

• Correlation among original features, power and interaction terms

• There is minimal correlation when 

centering-based scalers (Standard, 

Robust) are applied

• Source code is found here

Without scaling With MinMax scaling
With Standard scaling

With Robust scaling

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_correlation.ipynb


Basic Types of Ensemble Learning

• Sequential Ensemble Learning (boosting)

– Key ideas: 

• base learners are dependent on the results from previous base learners

• every subsequent base model corrects the prediction made by its predecessor fixing the 

errors in it

• overall performance can be gradually increased

– Cons: tends to overfit the training data

– Examples: AdaBoost, Stochastic Gradient Boosting, XGBoost, CatBoost



Basic Types of Ensemble Learning

• Parallel ensemble learning using homogeneous learners (also 

called bagging)

– all base learners are homogeneous (same machine learning algorithm) and 

execute in parallel on different random subsets of the original dataset

– no dependency between the base learners

– results of all base models are combined in the end (using averaging for 

regression and voting for classification problems)

• Averaging: every learner make a prediction (predicted value) for each data point, and 

the final predicted value for that point is the average of all predicted values

• Voting: every learner makes a prediction (votes) for each data point (row in dataset) to 

which category should be assigned to and the final output prediction for that point is the 

category that receives more than half (or the majority) of the votes

– See more here

– Examples: sklearn.ensemble.BaggingRegressor, 

sklearn.ensemble.RandomForestRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html


Basic Types of Ensemble Learning

• Parallel ensemble learning using heterogeneous learners (also 

called stacking)

– all base learners are heterogeneous (different machine learning algorithm) 

and execute in parallel

• Base Learners are trained using the available data

– meta learner combines predictions of base learners

• Meta Learner is trained to make a final prediction using the Base Learners’ predictions 

on the input data – base models’ predictions are used as input features to meta learner

– stacking obtains better performance results than any of the individual weak 

learners

– Example: sklearn.ensemble.StackingRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html


Random Forest Regression

• A Random Forest is a bagging ensemble technique

• Performs both regression and classification tasks with the use of 

multiple decision trees as base models

• The name “Random Forest” comes from the bootstrapping idea of 

data randomization (training datasets for each tree taken from 

random subsets of the initial training dataset) and building multiple 

Decision Trees (Forest)

• RandomForestRegressor class

– sklearn.ensemble.RandomForestRegressor

– More info here

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=randomforest#sklearn.ensemble.RandomForestRegressor


Bagging in detail
• Parallel Ensemble Learning of homogeneous learners: 

Bootstrapping (resampling) => Aggregating => Bagging

1. To start with, let’s assume you have some original data that you 

want to use as your training set (dataset D with N samples). You 

want to have K base models in our ensemble.

2. In order to promote model variance, Bagging requires training 

each model in the ensemble on a randomly drawn subset of the 

training set. The number of samples in each subset is usually 

equal to the original dataset (N), although it can be smaller.

3. To create each subset, you need to use a bootstrapping 

technique:

a) First, randomly pull a sample from your original dataset D and put it 

to your subset

b) Second, return the sample to D (this technique is called sampling 

with replacement)

c) Third, perform steps (a) and (b) N (or less) times to fill your subset

d) Then perform steps (a), (b), and (c) K – 1 time to have K subsets for 

each of your K base models

4. Train each of K base models on its subset, make predictions 

using test (unseen) dataset 

5. Combine (aggregate) the prediction of each sample (row) from 

the test dataset and evaluate the final result for each sample

If you are solving a Classification problem, you 

should use a voting process to determine the final 

result. The result is usually the most frequent class 

among K model predictions. In the case of 

Regression, you should just take the average of 

the K model predictions.

Training dataset: D

N samples



Bagging in detail (sampling with replacement)

• Boostrapping process creates a new training dataset for each base 

model

• Some samples (rows) of the initial training dataset can be selected 

multiple times within a base model’s training dataset

• Build multiple base models – each one trained on its own dataset

• Use each base model to make a prediction using the test dataset

• Combine (average) predictions to provide the final ensemble 

algorithm prediction

Original dataset 1 2 3 4 5 6 7 8 9 10

Base Model 1 dataset 7 8 10 8 2 5 10 10 5 9

Base Model 2 dataset 1 4 9 1 2 3 2 7 3 2

Base Model 3 dataset 1 8 5 10 5 5 9 6 3 7

Training datasets (with 10 samples/rows each)



Feature scaling in gradient descent algorithms

• The algorithms work by iteratively updating the model parameters in 

small steps, nudging them in the direction that minimizes the 

prediction error.

• Sometimes your model won’t converge at all if you don’t scale your 

features.

• This is because the gradient descent algorithm will be jumping 

around the parameter space, heavily influenced by the features with 

the largest ranges.

• In cases where the features are already on a similar scale or when 

using optimization algorithms that do not rely on gradients, feature 

scaling might not have a significant impact on performance.
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