
ΕΛΠ 605: Προχωρηµένη
Αρχιτεκτονική Υπολογιστών

Εργαστήριο 3

Linux Monitoring Utilities
(perf,top,mpstat ps, free) and gdb

dissasembler, gnuplot

top
Realtime monitoring of:

CPU and memory utilization for each process
Total CPU utilization – average and per core
Total Memory utilization (used and free)

Useful Command switches:
top –d 1 #set the update interval to 1 second //the default is 3
seconds
top –b #run in batch mode, top will run until killed, useful for
saving top output in a file
top –H # instruct top to show individual threads
top –u username # show processes of a specific user only

top
• >taskset -c 0 ./matrix_serial_ver1 &> /dev/null &
• >top

•

• CPU utilization explanation: us (user time) sy (system time) ni (processes that run at higher priority)
id (idle time) wa (cpu waiting for I/O), hi si (hardware and software interrupts handling)

• User zhadji01 is running matrix_serial_v and xioann02 runs firefox, total main memory is 8GB
(7933440KB)

• matrix_serial_v consumes 99.7% CPU time and 0.1% of total memory
• Average CPU utilization is 27.3% and the CPU has four cores this means that ~one core is

fully utilized
Press key 1 to view CPU utilization per core

• Indeed Core0 is fully utilized at 100%, matrix_serial_v runs at core0 as instructed by taskset

top –H to view threads of multithreaded programs
• >./simpleParallelProgram &
• >top

400% CPU utilization means it uses 4 cores
top –H to view threads
>top –H

Each thread has ~100% cpu utilization meaning it utilizes fully one core

top useful keys in interactive mode
• Press 1 to view per core utilization
• Press Shift+p to sort process from higher CPU utilization to lower
• Press u to view specific user

Htop
htop (https://linux.die.net/man/1/htop)
an interactive system-monitor process-viewer

https://linux.die.net/man/1/htop

ps command
• Gives a snapshot of all processes
• >ps aux

• >ps –ef

• ps -eLF # information about threads

mpstat
A good tool to view CPU utilization
mpstat -P ALL 2 1

-P ALL show all cores
2 1 show two reports with one second interval between

them

free
Tool to view memory utilization
free

perf: Linux profiling with performance counters
Performance counters are CPU hardware registers that

count hardware events such as instructions executed,
cache-misses suffered, or branches mispredicted.

perf provides rich generalized abstractions over hardware
specific capabilities. Among others, it provides per task,
per CPU and per-workload counters, sampling on top of
these and source code event annotation. Perf gives you
visibility where the Hotspots of your program are.

https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page

Intel Core Performance Monitor Unit (PMU)

Limited number of hardware counters (8 counters per core on the above example)
Time multiplexing is performed when selected events > hardware counters. An estimation of

actual account is given
e.g. user wants to measure instructions and cycles but only one counter is available, perf will

measure half of the time the instructions and half of the time the cycles. The measured
instructions and cycles will be multiplied by 2 to give an estimation of the actual total
instructions and cycles

Perf Events
>perf l i s t
List of pre-defined events (to be used in - e) :

cpu-cycles OR cycles
instructions
cache-references
cache-misses
branch-instructions OR branches
branch-misses
bus-cycles
stalled-cycles-frontend OR idle-cycles-frontend
stalled-cycles-backend OR idle-cycles-backend
ref-cycles

[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]

cpu-clock
task- clock
page-faults ORfaults
context-switches ORcs
cpu-migrations ORmigrations
minor-faults
major-faults
a lignment - f aul t s
emu la tion- f aul t s

[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]

L1-dcache-loads
L1-dcache-load-misses
L1-dcache-stores
L1-dcache-store-misses
L1-dcache-prefetches

[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]

Measuring multiple events
perf stat -e instructions,cycles matrix_serial_ver1
Performance counter stats for './matrix_serial_ver1':

34,058,795,490 instructions # 2.67 insn per cycle
12,762,609,265 cycles

3.487285969 seconds time elapsed

To measure more than one event, after -e provide a comma-separated list :
perf stat -e cycles,instructions,cache-misses ./matrix_serial_ver1

To save the output to a file use –o switch
perf stat –o tmp -e cycles,instructions,cache-misses ./matrix_serial_ver1
cat tmp
Performance counter stats for './matrix_serial_ver1':

34,058,795,490 instructions # 2.67 insn per cycle
12,762,609,265 cycles

3.487285969 seconds time elapsed

Attach to already running process
To attach to running process –p (-t to attach to thread)
./matrix_serial_ver1 &

perf stat -e instructions,cycles -p $! & ##$! Is the Pid of last launced process

or do
perf stat -e instructions,cycles –p `pgrep matrix_serial` &

pkill -SIGINT perf # send signal interrupt to perf to make perf print statistics

Performance counter stats for './matrix_serial_ver1':

34,058,795,490 instructions # 2.67 insn per cycle

12,762,609,265 cycles

3.487285969 seconds time elapsed

perf stat -e instructions,cycles -p $! sleep 1 # perf will run only for 1 second
in this case pkill –SIGINT is
not required

https://perf.wiki.kernel.org/index.php/Tutorial

https://perf.wiki.kernel.org/index.php/Tutorial

System wide collection
xg3:/home/root_desktop>./run_NPB.sh ./NPB3.3/NPB3.3-OMP/bin/ sp.C.x 32 &> /dev/null &
we started a multithreaded workload that uses 32 cores, each core runs at 3GHz
##To sum the instructions and cycles executed by all cores

perf stat -e instructions,cycles -a sleep 1

Performance counter stats for 'system wide':

34,812,562,418 instructions # 0.36 insn per cycle
95,655,967,640 cycles //Each core at 3GHz should have 3Billion cycles in 1seconds, multiply by 32~96Billion

1.018783051 seconds time elapsed

0.36 instructions per cycle (IPC) is indicative of single threadperformance
To measure the actual IPC of all cores do
perf stat -e instructions,cycles -A -C 0-31 sleep 1
-A disables statistics aggregation –C defines which core statistics toprint

Per core stats

The actual CPU IPC is ~0.33 * 32 =10.56
Per core and system wide collection required root access, or administrator allowing global

perf collections (set /proc/sys/kernel/perf_event_paranoid to -1)

Perf top
Shows realtime the most hot function

Matrix Multiplication Examples

Matrix Multiplication Examples

Matrix Multiplication Examples

gcc Optimizations and Branch Prediction

gcc Optimizations and Branch Prediction

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Power monitoring

Only on bws103 machines
perf stat -e power/energy-cores/ -e power/energy-ram/ script

Assembly
>gcc –S main.c
>vi main.s
>gcc main.s -o main.s.out

>objdump –d
main.out

>hexdump –
C
main.out

GNUPlot
ht tp : / /www.gnuplo t . in fo /
h t t p : / / www.gnuplo t . i n f o / d ocumen t a t io n.html
(log i n t o cs6472 or any other machine tha t has gnuplot , and run gnuplot)
p l o t " d a t a . t x t " using 1:2 t i t l e 'Column 2 ' , " d a t a . t x t " using 1:3 t i t l e 'Column 3 '

p l o t " d a t a . t x t " using 1:2 t i t l e 'Column 2 '
gnuplot> set term png (w i l l produce .png output)
gnuplot> set output "printme.png" (output t o any fi lename you use)
gnuplot> rep lo t

http://www.gnuplot.info/documentation.html
http://www.gnuplot.info/documentation.html

