
University of Cyprus

Department of

Computer Science

EPL660: Information

Retrieval and Search

Engines – Lab 3

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Apache Lucene

• Extremely rich and powerful full-text search

library written in Java

• Makes it easy to add search functionality to an

application or website

• Requires 2 steps:

– creating a lucence index on a given set of documents

– parsing the user query and looking up the prebuilt

index (instead of searching the text directly) to answer

the query

• Content added to Lucene can be from various

sources and formats like SQL/NoSQL dBs,

filesystem (text/pdf/MS Office files), or websites

(html files)

Apache Lucene Overview

• Scalable, High-Performance Indexing

– Over 500-600GB/hour on modern hardware

– Small RAM requirements

– Incremental indexing as fast as batch indexing

– Index size roughly 20-30% the size of text indexed

• Cross-Platform Solution

– Available as Open Source software under the Apache

License which lets you use Lucene in both commercial

and Open Source programs

– 100%-pure Java

– Implementations in other programming languages

available that are index-compatible

http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://wiki.apache.org/lucene-java/LuceneImplementations

Apache Lucene: heart of search engines

• Lucene is the information retrieval software library

under the hood of top-ranked search engines

– Elasticsearch search engine

– Apache Solr search engine

Source: https://db-engines.com/en/ranking/search+engine

https://db-engines.com/en/ranking/search+engine

Apache Lucene Features

• Many powerful query types:

– phrase queries,

– wildcard queries,

– proximity queries,

– range queries and more

• Ranked searching -- best results returned first

• Pluggable ranking models, including the vector

space model (documents and queries are represented as vectors, find

similarity between documents/query) and okapi BM25 (ranking

function to rank matching docs according to their relevance to a given query)

http://en.wikipedia.org/wiki/Vector_Space_Model
http://en.wikipedia.org/wiki/Okapi_BM25

Apache Lucene Features

• Fielded searching (e.g. title, author, contents)

• Sorting by any field

• Multiple-index searching with merged results

• Allows simultaneous update and searching

• Fast, memory-efficient and

typo-tolerant suggesters (suggesting

query terms or phrases based on

incomplete user input)

• Flexible faceting (information classified into

categories – users explore information by

applying filters), highlighting, joins and result

grouping

Faceted searching

After searching for a term, you

can then see that result in the

following categories: Images,

News, Videos, Books, etc.

Lucene Indexing
• First step when building a Lucene app is to create the index

– Lucene index consists of Lucene document objects

• Document objects are stored in the index

– programmer’s job to "convert" data (files) into Document objects

1. Create a Lucene document

– Document consists of one or more fields

– Each field has name and value

– Fields are optionally stored in index, so that they may be returned

with hits on the document after searching.

– doc.add(new TextField(name,value,TextField.Store.YES))

2. Add the document to the index (indexing)

– Using IndexWriter class

– indexWriter.addDocument(doc)

But how are the documents are processed prior indexing?

– Tokenization, stop words removal, stemming, etc.

Lucene Analyzer

• An analyzer extracts index terms from text

• Lucene comes with a default analyzer which works well for
unstructured English text (language-specific analyzers
exist)
– StandardAnalyzer→ tokenize, lowercase normalization, stop

words removal

• Lucene has many built-in analyzers:
– SimpleAnalyzer: A sophisticated general-purpose analyzer.

– WhitespaceAnalyzer: A very simple analyzer that just
separates tokens using white space.

– StopAnalyzer: Removes common English words that are not
usually useful for indexing.

– SnowballAnalyzer: An interesting experimental analyzer that
works on word roots (transforms a word into its root form: a search
on rain should also return entries with raining, rained, and so on).

• Lucene also makes it easy to build custom Analyzers

N
o
 S

te
m

m
in

g
!

S
te

m
m

in
g
!

Lucene Searching

• Once the index has been built you can create queries
to retrieve documents from the index using the steps:

1. Create the query
– Using QueryParser which turns Google-like search

expressions into Lucene's API representation of a Query

– Or using the built-in Query subclasses of Lucene API

2. Search the index
– Using IndexSearcher

– searcher.search(query, collector)

– Collector object gathers raw results from a search, and
implements sorting or custom result filtering

• Sorting: By default, Lucene will sort results by the relevance score of the
field that is being searched. This behavior can be customized at query
time.

Lucene Query Syntax
• Keyword matching

• title: foo --- search for the word foo

• title: "foo bar“ --- search for the phrase foo bar

• Wildcard matching
• title: "foo*bar“

• title: “te?t"

• Proximity matching
• "foo bar"~4

• search for a “foo" and “bar" within 4 words of each other in a document

• Range search
• date: [20110101 TO 20120101]

• title: {Aida TO Carmen}
• Inclusive range queries denoted by [] Exclusive range denoted by {}

• Boolean operators
• "foo bar" AND "quick fox"

• Boosts (specify which terms/clauses are more important)
• (title:foo OR title:bar)^1.5 (body:foo OR body:bar)

Prepare* for Lucene Applications

1. Download Apache Lucene 5.4.0 binaries (.zip for

Windows, .tgz for Unix) from:

http://www.us.apache.org/dist/lucene/java/5.4.0/

2. Extract the zip file to a folder

3. Open Eclipse

4. Add 4 JAR files (see next slide), located in the

folder of step 2, into CLASSPATH

– In Eclipse Menu: Window → Preferences → Java →

Installed JREs → double click on java-7-oracle → Add

External JARs (choose files to add)

5. Finish → Apply → OK

* Apache Lucene is already downloaded and associated with Eclipse in your VM

http://www.us.apache.org/dist/lucene/java/7.2.0/

Setting your CLASSPATH

• You need four (4) JARs:

– Core Lucene JAR,

– Queryparser JAR,

– Common analysis JAR,

– Lucene demo JAR.

• The Core Lucene JAR file is located under core/

directory, created when you extracted the archive;

it should be named lucene-core-{version}.jar.

• The other 3 JARs, called lucene-queryparser-

{version}.jar, lucene-analyzers-common-

{version}.jar and lucene-demo-{version}.jar are

located under queryparser, analysis/common/

and demo/, respectively.

Lucene: Example 1

• Create a new Class named “HelloLucene” with a

main() function and import the following libraries

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.Document;

import org.apache.lucene.document.TextField;

import org.apache.lucene.document.StringField;

import org.apache.lucene.index.DirectoryReader;

import org.apache.lucene.index.IndexReader;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.index.IndexWriterConfig;

import org.apache.lucene.queryparser.classic.ParseException;

import org.apache.lucene.queryparser.classic.QueryParser;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.Query;

import org.apache.lucene.search.ScoreDoc;

import org.apache.lucene.search.TopScoreDocCollector;

import org.apache.lucene.store.Directory;

import org.apache.lucene.store.RAMDirectory;

Lucene: Example 1

• Add the following exceptions to the main() function

throws ParseException, IOException

• Specify the analyzer that you will use for

indexing/searching

StandardAnalyzer analyzer = new StandardAnalyzer();

• Create the Index

Directory index = new RAMDirectory(); // index in RAM

IndexWriterConfig config = new IndexWriterConfig(analyzer);

IndexWriter w = null;

int id = 0;

w = new IndexWriter(index, config);

addDoc(w, "Lucene in Action“, ++id);

addDoc(w, "Lucene for Dummies“, ++id);

addDoc(w, "Managing Gigabytes“, ++id);

addDoc(w, "The Art of Computer Science“, ++id);

w.close();

Lucene: Example 1

• Create the query String and parse it with the

query parser

• Use the same analyzer for both indexing and

searching!

String querystr = "lucene";

// Use the same analyzer for both indexing and

searching

QueryParser parser = new QueryParser("title",

analyzer);

Query q = null;

q = parser.parse(querystr);
DEFINE THE DEFAULT FIELD

FOR QUERY TERMS

https://lucene.apache.org/core/4_5_0/queryparser/org/apache/lucene/queryparser/classic/QueryParser.html

Lucene: Example 1

• Make the search in the index for the specified

query String and store the top 10 results

int hitsPerPage = 10;

IndexReader reader = null;

TopScoreDocCollector collector = null;

IndexSearcher searcher = null;

reader = DirectoryReader.open(index);

searcher = new IndexSearcher(reader);

collector =

TopScoreDocCollector.create(hitsPerPage);

searcher.search(q, collector);

ScoreDoc[] hits = collector.topDocs().scoreDocs;

Lucene: Example 1

• Display the results and close the index reader

System.out.println("Found " + hits.length + "

hits.");

for (int i = 0; i < hits.length; ++i) {

// get ids of the returned documents

int docId = hits[i].doc; // hit[i].score

Document d;

// retrieve document with given id from index

d = searcher.doc(docId);

System.out.println((i + 1) + ". " +

d.get("title"));

}

reader.close();

Lucene: Example 1

• Create the addDoc() function
private static void addDoc(IndexWriter w, String

title, int id) throws IOException {

Document doc = new Document();

doc.add(new StringField("id",

Integer.toString(id), StringField.Store.YES));

doc.add(new TextField("title", title,

TextField.Store.YES));

w.addDocument(doc);

}

StringField vs TextField: In the above example, the "id" field contains the ID of the

document, which is a single atomic value.

In contrast, the “title" field contains an English text, which should be parsed (or

"tokenized") into a set of words for indexing.

Use StringField for field with atomic value that is INDEXED BUT NOT TOKENIZED.

Use TextField for a field that is INDEXED AND TOKENIZED into a set of words.

TO BE TOKENIZED

FOR INDEXING

Indexed and Stored

• There are two basic ways a document field can be written

into Lucene.

– Indexed - The field is indexed and can be searched (applies for both

StringField and TextField)

– Stored - The field's full text is stored in index and will be returned

with search results (Store.YES, Store.NO)

• If a field is indexed but not stored, you can search for it, but

it won't be returned with search results.

• A common practice is to have an ID field being stored which

can be used to retrieve the full contents of the document

/record from, for instance, a SQL database, a file system, or

an web resource.

• You might also opt not to store a field when that field is just

a search tool, but you wouldn't display it to the user, such as

a soundex/metaphone, or an alternate analysis of a field.

Lucene: Example 1

• Run the application

• You should see the following in the Console tab:
Found 2 hits.

1. Lucene in Action

2. Lucene for Dummies

Lucene: Example 1
• Now modify the application to return only the documents whose title

contains both “lucene” AND “action”

• 1st approach: Use the special syntax of QueryParser

String querystr = "title:lucene AND title:action";

• 2nd approach: Construct manually the query

TermQuery tq1 = new TermQuery(new Term("title",

"lucene"));

TermQuery tq2 = new TermQuery(new Term("title",

"action"));

BooleanQuery bq = new BooleanQuery();

q.add(tq1, BooleanClause.Occur.MUST);

q.add(tq2, BooleanClause.Occur.MUST);

• More about query syntax at

http://www.lucenetutorial.com/lucene-query-syntax.html

http://lucene.apache.org/core/6_4_0/core/org/apache/lucene/search/package-

summary.html#package_description

http://www.lucenetutorial.com/lucene-query-syntax.html
http://lucene.apache.org/core/6_4_0/core/org/apache/lucene/search/package-summary.html#package_description

Lucene: Example 1

• Recall that index contains the titles of 4 docs:
Lucene in Action

Lucene for Dummies

Managing Gigabytes

The Art of Computer Science

• What results do you expect to get when you

submit the following query:

– title:c? OR title:d*

– title:c* OR title:d*

– title:lucene AND title:for

Lucene: Example 2
• Use Lucene to index all the text files in a directory and its subdirectories

• Additionally to the previous example the following library is required:
import java.io.File;

• In main() (which throws IOException) add the following code:
File dataDir = new File("LuceneFiles");

// Check whether the directory to be indexed exists

if (!dataDir.exists() || !dataDir.isDirectory()) {

throw new IOException(dataDir

+ " does not exist or is not a directory");

}

Directory indexDir = new RAMDirectory();

// Specify the analyzer for tokenizing text.

StandardAnalyzer analyzer = new StandardAnalyzer();

IndexWriterConfig config = new IndexWriterConfig(analyzer);

IndexWriter writer = new IndexWriter(indexDir, config);

// call indexDirectory to add to your index

// the names of the txt files in dataDir

indexDirectory(writer, dataDir);

writer.close();

Lucene: Example 2

• Create the indexDirectory() method:
private static void indexDirectory(IndexWriter

writer, File dir) throws IOException {

File[] files = dir.listFiles();

for (int i = 0; i < files.length; i++) {

File f = files[i];

if (f.isDirectory()) {

indexDirectory(writer, f); // recurse

} else if (f.getName().endsWith(".txt")) {

// call indexFile to add the title of the txt

file to your index

indexFile(writer, f);

}

}

}

Lucene: Example 2

• Create the indexFile() method:
private static void indexFile(IndexWriter

writer, File f) throws IOException {

System.out.println("Indexing file \t\t" +

f.getName());

Document doc = new Document();

doc.add(new TextField("filename", f.getName(),

TextField.Store.YES));

writer.addDocument(doc);

}

Example 2 - Submission

• With the code given your index is ready!

• Don’t forget to create “LuceneFiles” directory to

your workspace under your project’s folder using

files in the dataset.zip
• Query your index for the word rep*rt* (on the

field “filename”) using the QueryParser and print

results on console as follows:

• Implement Example 2 and submit the .java file

and the results in a .txt file to Moodle by 15th of

October @ 15:00

Useful Links

• http://lucene.apache.org/core/

• http://www.lucenetutorial.com/

• http://lucene.apache.org/core/8_6_0/index.html

http://lucene.apache.org/core/
http://www.lucenetutorial.com/
http://lucene.apache.org/core/8_6_0/index.html

Class RAMDirectory

• A memory-resident Directory implementation.

• This class is optimized for small memory-resident

indexes. It also has bad concurrency on

multithreaded environments.

– Warning: This class is not intended to work with huge

indexes. Everything beyond several hundred megabytes

will waste resources, because it uses an internal buffer

size of 1024 bytes, producing millions

of byte[1024] arrays.

• Recommended to materialize large indexes on disk

and use MMapDirectory,

– high-performance directory implementation working

directly on the file system cache of the operating system

https://lucene.apache.org/core/6_5_1/core/org/apache/lucene/store/Directory.html
https://lucene.apache.org/core/6_5_1/core/org/apache/lucene/store/MMapDirectory.html

