## $E\Pi\Lambda660$

## Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης

Classification and data clustering

## Categorization/Classification

- Given:
  - A description of an instance,  $d \in X$ 
    - X is the instance language or instance space.
      - Issue: how to represent text documents.
      - Usually some type of high-dimensional space
  - A fixed set of classes:

$$C = \{c_1, c_2, ..., c_J\}$$

- Determine:
  - The category of  $d: \gamma(d) \in C$ , where  $\gamma(d)$  is a *classification* function whose domain is X and whose range is C.
    - We want to know how to build classification functions ("classifiers").

## **Supervised Classification**

#### Given:

- A description of an instance,  $d \in X$ 
  - X is the instance language or instance space.
- A fixed set of classes:

$$C = \{c_1, c_2, ..., c_J\}$$

■ A training set D of labeled documents with each labeled document  $\langle d,c\rangle \in X \times C$ 

#### Determine:

- A learning method or algorithm which will enable us to learn a classifier  $\gamma:X\to C$
- For a test document d, we assign it the class  $\gamma(d) \in C$

#### **Document Classification**



(Note: in real life there is often a hierarchy, not present in the above problem statement; and also, Slides by Manning, Raghavan, Schutze papers on ML approaches to Garb. Coll.)

#### More Text Classification Examples

Many search engine functionalities use classification

- Assigning labels to documents or web-pages:
- Labels are most often topics such as Yahoo-categories
  - "finance," "sports," "news>world>asia>business"
- Labels may be genres
  - "editorials" "movie-reviews" "news"
- Labels may be opinion on a person/product
  - "like", "hate", "neutral"
- Labels may be domain-specific
  - "interesting-to-me": "not-interesting-to-me"
  - "contains adult language": "doesn't"
  - language identification: English, French, Chinese, ...
  - search vertical: about Linux versus not
  - "link spam": "not link spam"

#### Probabilistic relevance feedback

- Rather than reweighting in a vector space...
- If user has told us some relevant and some irrelevant documents, then we can proceed to build a probabilistic classifier,
  - such as the Naive Bayes model we will look at today:
  - $P(t_k | R) = |D_{rk}| / |D_r|$
  - $P(t_k | NR) = |D_{nrk}| / |D_{nr}|$ 
    - $t_k$  is a term;  $\mathbf{D}_r$  is the set of known relevant documents;  $\mathbf{D}_{rk}$  is the subset that contain  $t_k$ ;  $\mathbf{D}_{nr}$  is the set of known irrelevant documents;  $\mathbf{D}_{nrk}$  is the subset that contain  $t_k$ .

## Recall a few probability basics

- For events a and b:
- Bayes' Rule

$$p(a,b) = p(a \cap b) = p(a \mid b)p(b) = p(b \mid a)p(a)$$
$$p(\overline{a} \mid b)p(b) = p(b \mid \overline{a})p(\overline{a})$$

$$p(a \mid b) = \frac{p(b \mid a)p(a)}{p(b)} = \frac{p(b \mid a)p(a)}{\sum_{x=a,\overline{a}} p(b \mid x)p(x)}$$
Prior Prior Prior

Odds:

$$O(a) = \frac{p(a)}{p(\overline{a})} = \frac{p(a)}{1 - p(a)}$$

## Bayesian Methods

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Builds a generative model that approximates how data is produced
- Uses prior probability of each category given no information about an item
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

## Bayes' Rule for text classification

For a document d and a class c

$$P(c,d) = P(c \mid d)P(d) = P(d \mid c)P(c)$$

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

## **Naive Bayes Classifiers**

Task: Classify a new instance d based on a tuple of attribute values into one of the classes  $c_i \in C$ 

$$d = \langle x_1, x_2, K, x_n \rangle$$

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_n)$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, \dots, x_{n} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, \dots, x_{n})}$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c_j) P(c_j)$$

MAP is "maximum a posteriori" = most likely class

## Naïve Bayes Classifier: Naïve Bayes Assumption

- $P(c_j)$ 
  - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, \dots, x_n/c_j)$ 
  - $O(|X|^n \bullet |C|)$  parameters
  - Could only be estimated if a very, very large number of training examples was available.

#### Naïve Bayes Conditional Independence Assumption:

• Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities  $P(x_i | c_i)$ .

## The Naïve Bayes Classifier



Conditional Independence Assumption:

features detect term presence and are independent of each other given the class:

$$P(X_1,\ldots,X_5\mid C) = P(X_1\mid C) \bullet P(X_2\mid C) \bullet \cdots \bullet P(X_5\mid C)$$

This model is appropriate for binary variables

#### Learning the Model



- First attempt: maximum likelihood estimates
  - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

#### Problem with Maximum Likelihood



$$P(X_1,\ldots,X_5\mid C) = P(X_1\mid C) \bullet P(X_2\mid C) \bullet \cdots \bullet P(X_5\mid C)$$

What if we have seen no training documents with the word muscleache and classified in the topic Flu?

$$\hat{P}(X_5 = t \mid C = nf) = \frac{N(X_5 = t, C = nf)}{N(C = nf)} = 0$$

Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\ell = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

#### **Smoothing to Avoid Overfitting**

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k}$$
# of values of  $X_i$ 

Somewhat more subtle version

overall fraction in data where  $X_i = x_{i,k}$ 

$$\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + mp_{i,k}}{N(C = c_j) + m}$$

extent of "smoothing"

## Naive Bayes Classifier

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} [\log P(c_j) + \sum_{i \in positions} \log P(x_i \mid c_j)]$$

- Simple interpretation: Each conditional parameter  $\log P(x_i|c_j)$  is a weight that indicates how good an indicator  $x_i$  is for  $c_i$ .
- The prior  $\log P(c_j)$  is a weight that indicates the relative frequency of  $c_j$ .
- The sum is then a measure of how much evidence there is for the document being in the class.
- We select the class with the most evidence for it

#### Two Naive Bayes Models

- Model 1: Multivariate Bernoulli
  - One feature  $X_{w}$  for each word in dictionary
  - $X_w$  = true in document d if w appears in d
  - Naive Bayes assumption:
    - Given the document's topic, appearance of one word in the document tells us nothing about chances that another word appears
- This is the model used in the binary independence model in classic probabilistic relevance feedback on hand-classified data (Maron in IR was a very early user of NB)

#### Two Naive Bayes Models

- Model 2: Multinomial = Class conditional unigram
  - One feature  $X_i$  for each word pos in document
    - feature's values are all words in dictionary
  - Value of  $X_i$  is the word in position i
  - Naïve Bayes assumption:
    - Given the document's topic, word in one position in the document tells us nothing about words in other positions
  - Second assumption:
    - Word appearance does not depend on position

$$P(X_i = w \mid c) = P(X_j = w \mid c)$$

for all positions *i,j*, word *w*, and class *c* 

Just have one multinomial feature predicting all words

#### Parameter estimation

Multivariate Bernoulli model:

$$\hat{P}(X_w = t \mid c_j) = \begin{array}{c} \text{fraction of documents of topic } c_j \\ \text{in which word } w \text{ appears} \end{array}$$

Multinomial model:

$$\hat{P}(X_i = w \mid c_j) =$$
fraction of times in which word w appears among all words in documents of topic  $c_j$ 

- Can create a mega-document for topic j by concatenating all documents in this topic
- Use frequency of w in mega-document

#### Classification

- Multinomial vs Multivariate Bernoulli?
- Multinomial model is almost always more effective in text applications!
  - See results figures later

 See IIR sections 13.2 and 13.3 for worked examples with each model

#### Exercise

|              | docID | words in document           | in $c = China$ ? |
|--------------|-------|-----------------------------|------------------|
| training set | 1     | Chinese Beijing Chinese     | yes              |
|              | 2     | Chinese Chinese Shanghai    | yes              |
|              | 3     | Chinese Macao               | yes              |
|              | 4     | Tokyo Japan Chinese         | no               |
| test set     | 5     | Chinese Chinese Tokyo Japan | ?                |

- Estimate parameters of Naive Bayes classifier
- Classify test document

#### Example: Parameter estimates

Priors:  $\hat{P}(c) = 3/4$  and  $\hat{P}(\overline{c}) = 1/4$  Conditional probabilities:

$$\hat{P}(\text{Chinese}|c) = (5+1)/(8+6) = 6/14 = 3/7$$
 $\hat{P}(\text{Tokyo}|c) = \hat{P}(\text{Japan}|c) = (0+1)/(8+6) = 1/14$ 
 $\hat{P}(\text{Chinese}|\overline{c}) = (1+1)/(3+6) = 2/9$ 
 $\hat{P}(\text{Tokyo}|\overline{c}) = \hat{P}(\text{Japan}|\overline{c}) = (1+1)/(3+6) = 2/9$ 

The denominators are (8 + 6) and (3 + 6) because the lengths of  $text_c$  and  $text_{\overline{c}}$  are 8 and 3, respectively, and because the constant B is 6 as the vocabulary consists of six terms.

#### **Example: Classification**

$$\hat{P}(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003$$
  
 $\hat{P}(\overline{c}|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001$ 

Thus, the classifier assigns the test document to c = China. The reason for this classification decision is that the three occurrences of the positive indicator CHINESE in  $d_5$  outweigh the occurrences of the two negative indicators JAPAN and TOKYO.

## Feature Selection: Why?

- Text collections have a large number of features
  - 10,000 1,000,000 unique words ... and more
- May make using a particular classifier feasible
  - Some classifiers can't deal with 100,000 of features
- Reduces training time
  - Training time for some methods is quadratic or worse in the number of features
- Can improve generalization (performance)
  - Eliminates noise features
  - Avoids overfitting

#### Feature selection: how?

- Two ideas:
  - Hypothesis testing statistics:
    - Are we confident that the value of one categorical variable is associated with the value of another
    - Chi-square test  $(\chi^2)$
  - Information theory:
    - How much information does the value of one categorical variable give you about the value of another
    - Mutual information
- They're similar, but  $\chi^2$  measures confidence in association, (based on available statistics), while MI measures extent of association (assuming perfect knowledge of probabilities)

## $\chi^2$ statistic (CHI)

•  $\chi 2$  is interested in  $(f_o - f_e)^2/f_e$  summed over all table entries: is the observed number what you'd expect given the marginals?

$$\chi^{2}(j,a) = \sum (O-E)^{2} / E = (2-.25)^{2} / .25 + (3-4.75)^{2} / 4.75$$
$$+ (500-502)^{2} / 502 + (9500-9498)^{2} / 9498 = 12.9 \ (p < .001)$$

- The null hypothesis is rejected with confidence .999,
- since 12.9 > 10.83 (the value for .999 confidence).

|              | Term = jaguar | Term ≠ jaguar      | expected: <i>f<sub>e</sub></i> |
|--------------|---------------|--------------------|--------------------------------|
| Class = auto | 2 (0.25)      | 500 <i>(502)</i>   |                                |
| Class ≠ auto | 3 (4.75)      | 9500 <i>(9498)</i> | observed: $f_o$                |

## $\chi^2$ statistic (CHI)

There is a simpler formula for  $2x2 \chi^2$ :

$$\chi^{2}(t,c) = \frac{N \times (AD - CB)^{2}}{(A+C) \times (B+D) \times (A+B) \times (C+D)}$$

$$A = \#(t,c) \qquad C = \#(\neg t,c)$$

$$B = \#(t,\neg c) \qquad D = \#(\neg t, \neg c)$$

$$N = A + B + C + D$$

# Feature selection via Mutual Information

- In training set, choose k words which best discriminate (give most info on) the categories.
- The Mutual Information between a word, class is:

$$I(w,c) = \sum_{e_w \in \{0,1\}} \sum_{e_c \in \{0,1\}} p(e_w, e_c) \log \frac{p(e_w, e_c)}{p(e_w)p(e_c)}$$

For each word w and each category c

## Feature selection via MI (contd.)

- For each category we build a list of *k* most discriminating terms.
- For example (on 20 Newsgroups):
  - sci.electronics: circuit, voltage, amp, ground, copy, battery, electronics, cooling, ...
  - rec.autos: car, cars, engine, ford, dealer, mustang, oil, collision, autos, tires, toyota, ...
- Greedy: does not account for correlations between terms
- Why?

#### Feature Selection

- Mutual Information
  - Clear information-theoretic interpretation
  - May select rare uninformative terms
- Chi-square
  - Statistical foundation
  - May select very slightly informative frequent terms that are not very useful for classification
- Just use the commonest terms?
  - No particular foundation
  - In practice, this is often 90% as good

## Classification Using Vector Spaces

- The training set is a set of documents, each labeled with its class (e.g., topic)
- In vector space classification, this set corresponds to a labeled set of points (or, equivalently, vectors) in the vector space
- Premise 1: Documents in the same class form a contiguous region of space
- Premise 2: Documents from different classes don't overlap (much)
- We define surfaces to delineate classes in the space

## Documents in a Vector Space



## Test Document of what class?



#### Test Document = Government



#### Aside: 2D/3D graphs can be misleading



*Left:* A projection of the 2D semicircle to 1D. For the points  $x_1, x_2, x_3, x_4, x_5$  at x coordinates -0.9, -0.2, 0, 0.2, 0.9 the distance  $|x_2x_3| \approx 0.201$  only differs by 0.5% from  $|x_2'x_3'| = 0.2$ ; but  $|x_1x_3|/|x_1'x_3'| = d_{\mathsf{true}}/d_{\mathsf{projected}} \approx 1.06/0.9 \approx 1.18$  is an example of a large distortion (18%) when projecting a large area. Right: The corresponding projection of the 3D hemisphere to 2D.

#### Using Rocchio for vector space classification

- •The principal difference between relevance feedback and text classification:
  - •The training set is given as part of the input in text classification.
  - •It is interactively created in relevance feedback.

#### Rocchio classification: Basic idea

- Compute a centroid for each class
  - •The centroid is the average of all documents in the class.
- Assign each test document to the class of its closest centroid.

#### Recall definition of centroid

$$\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)$$

where  $D_c$  is the set of all documents that belong to class c and  $\vec{v}(d)$  is the vector space representation of d.

#### Rocchio algorithm

```
TRAINROCCHIO(\mathbb{C}, \mathbb{D})

1 for each c_j \in \mathbb{C}

2 do D_j \leftarrow \{d : \langle d, c_j \rangle \in \mathbb{D}\}

3 \vec{\mu}_j \leftarrow \frac{1}{|D_j|} \sum_{d \in D_j} \vec{v}(d)

4 return \{\vec{\mu}_1, \dots, \vec{\mu}_J\}

APPLYROCCHIO(\{\vec{\mu}_1, \dots, \vec{\mu}_J\}, d)

1 return arg min<sub>i</sub> |\vec{\mu}_i - \vec{v}(d)|
```

#### Rocchio properties

- Rocchio forms a simple representation for each class: the centroid
  - •We can interpret the centroid as the prototype of the class.
- •Classification is based on similarity to / distance from centroid/prototype.
- Does not guarantee that classifications are consistent with the training data!

## Rocchio Classification: Example

|                                 | term weights |       |       |       |         |          |  |  |  |  |
|---------------------------------|--------------|-------|-------|-------|---------|----------|--|--|--|--|
| vector                          | Chinese      | Japan | Tokyo | Macao | Beijing | Shanghai |  |  |  |  |
| $d_1$                           | 0            | 0     | 0     | 0     | 1.0     | 0        |  |  |  |  |
| $\vec{d}_2$                     | 0            | 0     | 0     | 0     | 0       | 1.0      |  |  |  |  |
| $\vec{d}_3$                     | 0            | 0     | 0     | 1.0   | 0       | 0        |  |  |  |  |
| $\vec{d}_4$                     | 0            | 0.71  | 0.71  | 0     | 0       | 0        |  |  |  |  |
| $\overline{d}_5$                | 0            | 0.71  | 0.71  | 0     | 0       | 0        |  |  |  |  |
| $\overline{\mu}_c$              | 0            | 0     | 0     | 0.33  | 0.33    | 0.33     |  |  |  |  |
| $\overline{\mu}_{\overline{c}}$ | 0            | 0.71  | 0.71  | 0     | 0       | 0        |  |  |  |  |

The separating hyperplane in this case has the following parameters:

$$\vec{w} \approx (0 - 0.71 - 0.71 \ 1/3 \ 1/3 \ 1/3)^T$$
 $b = -1/3$ 

#### Rocchio cannot handle nonconvex, multimodal classes



Exercise: Why is Rocchio not expected to do well for the classification task a vs. b here?

- •A is centroid of the a's, B is centroid of the b's.
- •The point o is closer to A than to B.
- But o is a better fit for the b class.
- •A is a multimodal class with two prototypes.
- •But in Rocchio we only have one prototype.

#### Relevance feedback

- In relevance feedback, the user marks documents as relevant/nonrelevant.
- •Relevant/nonrelevant can be viewed as classes or categories.
- •For each document, the user decides which of these two classes is correct.
- ■The IR system then uses these class assignments to build a better query ("model") of the information need . . .
- . . . and returns better documents.
- •Relevance feedback is a form of text classification.

## k Nearest Neighbor Classification

- kNN = k Nearest Neighbor
- To classify a document d into class c:
- Define k-neighborhood N as k nearest neighbors of d
- Count number of documents i in N that belong to c
- Estimate P(c|d) as i/k
- Choose as class  $argmax_c P(c|d) = majority class$

#### Probabilistic kNN



1NN, 3NN classification decision for star?

## Example: k=6 (6NN)



P(science |♦)?

- Government
- Science
- Arts

## Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x (under 1NN):
  - Compute similarity between x and all examples in D.
  - Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
  - Case-based learning
  - Memory-based learning
  - Lazy learning
- Rationale of kNN: contiguity hypothesis

### k Nearest Neighbor

- Using only the closest example (1NN) to determine the class is subject to errors due to:
  - A single atypical example.
  - Noise (i.e., an error) in the category label of a single training example.
- More robust alternative is to find the k most-similar examples and return the majority category of these k examples.
- Value of k is typically odd to avoid ties; 3 and 5 are most common.

#### kNN decision boundaries



Boundaries are in principle arbitrary surfaces – but usually polyhedra

- Government
- Science
- Arts

kNN gives locally defined decision boundaries between classes – far away points do not influence each classification decision (unlike in Naïve Bayes, Rocchio, etc.)

## Similarity Metrics

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous m-dimensional instance space is Euclidean distance.
- Simplest for m-dimensional binary instance space is Hamming distance (number of feature values that differ).
- For text, cosine similarity of tf.idf weighted vectors is typically most effective.

#### Nearest Neighbor with Inverted Index

- Naively finding nearest neighbors requires a linear search through |D| documents in collection
- But determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.
- Use standard vector space inverted index methods to find the k nearest neighbors.
- Testing Time:  $O(B/V_t/)$  where B is the average number of training documents in which a test-document word appears.
  - Typically B << |D|</li>

#### kNN: Discussion

- No feature selection necessary
- Scales well with large number of classes
  - Don't need to train n classifiers for n classes.
- Classes can influence each other
  - Small changes to one class can have ripple effect
- Scores can be hard to convert to probabilities
- No training necessary
  - Actually: perhaps not true. (Data editing, etc.)
- May be expensive at test time
- In most cases it's more accurate than NB or Rocchio

## Linear classifiers and binary and multiclass classification

- Consider 2 class problems
  - Deciding between two classes, perhaps, government and non-government
    - One-versus-rest classification
- How do we define (and find) the separating surface?
- How do we decide which region a test doc is in?

## Separation by Hyperplanes

- A strong high-bias assumption is linear separability:
  - in 2 dimensions, can separate classes by a line
  - in higher dimensions, need hyperplanes
- Can find separating hyperplane by linear programming (or can iteratively fit solution via perceptron):
  - separator can be expressed as ax + by = c



## Linear programming / Perceptron



## Which Hyperplane?



## Which Hyperplane?

- Lots of possible solutions for a,b,c.
- Some methods find a separating hyperplane, but not the optimal one [according to some criterion of expected goodness]
- Most methods find an optimal separating hyperplane
- Which points should influence optimality?
  - All points
    - Linear/logistic regression
    - Naïve Bayes
  - Only "difficult points" close to decision boundary
    - Support vector machines



#### **Linear Classifiers**

- Many common text classifiers are linear classifiers
  - Naïve Bayes
  - Perceptron
  - Rocchio
  - Logistic regression
  - Support vector machines (with linear kernel)
  - Linear regression with threshold
- Despite this similarity, noticeable performance differences
  - For separable problems, there is an infinite number of separating hyperplanes. Which one do you choose?
  - What to do for non-separable problems?
  - Different training methods pick different hyperplanes
- Classifiers more powerful than linear often don't perform better on text problems. Why?

#### Two-class Rocchio as a linear classifier

Line or hyperplane defined by:

$$\sum_{i=1}^{M} w_i d_i = b$$

For Rocchio, set:

$$\vec{w} = \vec{\mu}(c_1) - \vec{\mu}(c_2)$$

$$b = 0.5 \times (|\vec{\mu}(c_1)|^2 - |\vec{\mu}(c_2)|^2)$$

60

#### Rocchio is a linear classifier



#### Naive Bayes is a linear classifier

Two-class Naive Bayes. We compute:

$$\log \frac{P(C \mid d)}{P(\overline{C} \mid d)} = \log \frac{P(C)}{P(\overline{C})} + \sum_{w \in d} \log \frac{P(w \mid C)}{P(w \mid \overline{C})}$$

- Decide class C if the odds is greater than 1, i.e., if the log odds is greater than 0.
- So decision boundary is hyperplane:

$$\alpha + \sum_{w \in V} \beta_w \times n_w = 0$$
 where  $\alpha = \log \frac{P(C)}{P(\overline{C})}$ ;

$$\beta_w = \log \frac{P(w \mid C)}{P(w \mid \overline{C})}; \quad n_w = \# \text{ of occurrences of } w \text{ in } d$$

## A nonlinear problem



- A linear classifier like Naïve Bayes does badly on this task
- kNN will do very well (assuming enough training data)

### **High Dimensional Data**

- Pictures like the one at right are absolutely misleading!
- Documents are zero along almost all axes
- Most document pairs are very far apart (i.e., not strictly orthogonal, but only share very common words and a few scattered others)
- In classification terms: often document sets are separable, for most any classification
- This is part of why linear classifiers are quite successful in this domain



#### More Than Two Classes

- Any-of or multivalue classification
  - Classes are independent of each other.
  - A document can belong to 0, 1, or >1 classes.
  - Decompose into *n* binary problems
  - Quite common for documents
- One-of or multinomial or polytomous classification
  - Classes are mutually exclusive.
  - Each document belongs to exactly one class
  - E.g., digit recognition is polytomous classification
    - Digits are mutually exclusive

## Set of Binary Classifiers: Any of

- Build a classifier between each class and its complementary set (docs from all other classes).
- Given test doc, evaluate it for membership in each class.
- Apply decision criterion of classifiers independently
- Done
  - Though maybe you could do better by considering dependencies between categories

## Set of Binary Classifiers: One of

- Build a classifier between each class and its complementary set (docs from all other classes).
- Given test doc, evaluate it for membership in each class.
- Assign document to class with:
  - maximum score
  - maximum confidence
  - maximum probability
- Why different from multiclass/ classification?



## Summary: Representation of Text Categorization Attributes

- Representations of text are usually very high dimensional (one feature for each word)
- High-bias algorithms that prevent overfitting in highdimensional space should generally work best\*
- For most text categorization tasks, there are many relevant features and many irrelevant ones
- Methods that combine evidence from many or all features (e.g. naive Bayes, kNN) often tend to work better than ones that try to isolate just a few relevant features\*

\*Although the results are a bit more mixed than often thought

# Which classifier do I use for a given text classification problem?

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
  - How much training data is available?
  - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
  - How noisy is the data?
  - How stable is the problem over time?
    - For an unstable problem, it's better to use a simple and robust

### **Evaluating Categorization**

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
  - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data)
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: precision, recall, F1, classification accuracy
- Classification accuracy: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
  - Adequate if one class per document
  - Otherwise F measure for each class

### Naive Bayes vs. other methods

| (a) |                           | NB | Rocchio | kNN |       | SVM |
|-----|---------------------------|----|---------|-----|-------|-----|
|     | micro-avg-L (90 classes)  | 80 | 85      | 86  |       | 89  |
|     | macro-avg (90 classes)    | 47 | 59      | 60  |       | 60  |
|     |                           |    |         |     |       |     |
| (b) |                           | NB | Rocchio | kNN | trees | SVM |
|     | earn                      | 96 | 93      | 97  | 98    | 98  |
|     | acq                       | 88 | 65      | 92  | 90    | 94  |
|     | money-fx                  | 57 | 47      | 78  | 66    | 75  |
|     | grain                     | 79 | 68      | 82  | 85    | 95  |
|     | crude                     | 80 | 70      | 86  | 85    | 89  |
|     | trade                     | 64 | 65      | 77  | 73    | 76  |
|     | interest                  | 65 | 63      | 74  | 67    | 78  |
|     | ship                      | 85 | 49      | 79  | 74    | 86  |
|     | wheat                     | 70 | 69      | 77  | 93    | 92  |
|     | corn                      | 65 | 48      | 78  | 92    | 90  |
|     | micro-avg (top 10)        | 82 | 65      | 82  | 88    | 92  |
|     | micro-avg-D (118 classes) | 75 | 62      | n/a | n/a   | 87  |

Evaluation measure:  $F_1$ 

Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM). 70

## What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
  - Documents within a cluster should be similar.
  - Documents from different clusters should be dissimilar.
- The commonest form of unsupervised learning
  - Unsupervised learning = learning from raw data, as opposed to supervised data where a classification of examples is given
  - A common and important task that finds many applications in IR and other places

#### A data set with clear cluster structure



How would you design an algorithm for finding the three clusters in this case?

#### Applications of clustering in IR

- Whole corpus analysis/navigation
  - Better user interface: search without typing
- For improving recall in search applications
  - Better search results (like pseudo RF)
- For better navigation of search results
  - Effective "user recall" will be higher
- For speeding up vector space retrieval
  - Cluster-based retrieval gives faster search

# Yahoo! Hierarchy isn't clustering but is the kind of output you want from clustering



# Google News: automatic clustering gives an effective news presentation metaphor



## Scatter/Gather: Cutting, Karger, and Pedersen



# For visualizing a document collection and its themes

- Wise et al, "Visualizing the non-visual" PNNL
- ThemeScapes, Cartia
  - [Mountain height = cluster size]



#### For improving search recall

- Cluster hypothesis Documents in the same cluster behave similarly with respect to relevance to information needs
- Therefore, to improve search recall:
  - Cluster docs in corpus a priori
  - When a query matches a doc D, also return other docs in the cluster containing D
- Hope if we do this: The query "car" will also return docs containing automobile
  - Because clustering grouped together docs containing car with those containing automobile.

Why might this happen?

#### For better navigation of search results

- For grouping search results thematically
  - clusty.com / Vivisimo



#### Issues for clustering

- Representation for clustering
  - Document representation
    - Vector space? Normalization?
      - Centroids aren't length normalized
  - Need a notion of similarity/distance
- How many clusters?
  - Fixed a priori?
  - Completely data driven?
    - Avoid "trivial" clusters too large or small
      - If a cluster's too large, then for navigation purposes you've wasted an extra user click without whittling down the set of documents much.

### Notion of similarity/distance

- Ideal: semantic similarity.
- Practical: term-statistical similarity
  - We will use cosine similarity.
  - Docs as vectors.
  - For many algorithms, easier to think in terms of a distance (rather than similarity) between docs.
  - We will mostly speak of Euclidean distance
    - But real implementations use cosine similarity

#### Clustering Algorithms

- Flat algorithms
  - Usually start with a random (partial) partitioning
  - Refine it iteratively
    - K means clustering
    - (Model based clustering)
- Hierarchical algorithms
  - Bottom-up, agglomerative
  - (Top-down, divisive)

#### Hard vs. soft clustering

- Hard clustering: Each document belongs to exactly one cluster
  - More common and easier to do
- Soft clustering: A document can belong to more than one cluster.
  - Makes more sense for applications like creating browsable hierarchies
  - You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes
  - You can only do that with a soft clustering approach.
- We won't do soft clustering today

#### Partitioning Algorithms

- Partitioning method: Construct a partition of n documents into a set of K clusters
- Given: a set of documents and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
  - Globally optimal
    - Intractable for many objective functions
    - Ergo, exhaustively enumerate all partitions
  - Effective heuristic methods: K-means and K-medoids algorithms

#### **K-Means**

- Assumes documents are real-valued vectors.
- Clusters based on centroids (aka the center of gravity or mean) of points in a cluster, c:

$$\vec{\mu}(\mathbf{c}) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

- Reassignment of instances to clusters is based on distance to the current cluster centroids.
  - (Or one can equivalently phrase it in terms of similarities)

#### K-Means Algorithm

```
Select K random docs \{s_1, s_2, ... s_K\} as seeds.

Until clustering converges (or other stopping criterion):

For each doc d_i:

Assign d_i to the cluster c_j such that dist(x_i, s_j) is minimal.

(Next, update the seeds to the centroid of each cluster)

For each cluster c_j

s_i = \mu(c_i)
```

# K Means Example(K=2)



#### Termination conditions

- Several possibilities, e.g.,
  - A fixed number of iterations.
  - Doc partition unchanged.
  - Centroid positions don't change.

Does this mean that the docs in a cluster are unchanged?

#### Convergence

- Why should the K-means algorithm ever reach a fixed point?
  - A state in which clusters don't change.
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
  - EM is known to converge.
  - Number of iterations could be large.
    - But in practice usually isn't

#### Lower case!

#### Convergence of *K*-Means

- Define goodness measure of cluster  $\hat{k}$  as sum of squared distances from cluster centroid:
  - $G_k = \Sigma_i (d_i c_k)^2$  (sum over all  $d_i$  in cluster k)
- $G = \Sigma_k G_k$
- Reassignment monotonically decreases G since each vector is assigned to the closest centroid.

#### Convergence of K-Means

- Recomputation monotonically decreases each  $G_k$  since  $(m_k$  is number of members in cluster k):
  - $\Sigma (d_i a)^2$  reaches minimum for:

  - $\sum d_i = \sum a$
  - $m_K a = \sum d_i$
  - $a = (1/m_k) \Sigma d_i = c_k$
- K-means typically converges quickly

#### **Time Complexity**

- Computing distance between two docs is O(M)
  where M is the dimensionality of the vectors.
- Reassigning clusters: O(KN) distance computations, or O(KNM).
- Computing centroids: Each doc gets added once to some centroid: O(NM).
- Assume these two steps are each done once for I iterations: O(IKNM).

#### Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
  - Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
  - Try out multiple starting points
  - Initialize with the results of another method.

## Example showing sensitivity to seeds

| A | В | ( |
|---|---|---|
| 0 | В | ( |
| 0 | 0 | ( |

F

In the above, if you start with B and E as centroids you converge to {A,B,C} and {D,E,F}
If you start with D and F you converge to {A,B,D,E} {C,F}

#### K-means issues, variations, etc.

- Recomputing the centroid after every assignment (rather than after all points are re-assigned) can improve speed of convergence of K-means
- Assumes clusters are spherical in vector space
  - Sensitive to coordinate changes, weighting etc.
- Disjoint and exhaustive
  - Doesn't have a notion of "outliers" by default
  - But can add outlier filtering

### **How Many Clusters?**

- Number of clusters K is given
  - Partition n docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem
  - Given docs, partition into an "appropriate" number of subsets.
  - E.g., for query results ideal value of K not known up front
    though UI may impose limits.
- Can usually take an algorithm for one flavor and convert to the other.

#### K not specified in advance

- Say, the results of a query.
- Solve an optimization problem: penalize having lots of clusters
  - application dependent, e.g., compressed summary of search results list.
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters

#### Hierarchical Clustering

 Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.



 One approach: recursive application of a partitional clustering algorithm.

### Dendrogram: Hierarchical Clustering

 Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.



# Hierarchical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
  - then repeatedly joins the <u>closest pair</u> of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

#### Closest pair of clusters

- Many variants to defining closest pair of clusters
- Single-link
  - Similarity of the most cosine-similar (single-link)
- Complete-link
  - Similarity of the "furthest" points, the least cosine-similar
- Centroid
  - Clusters whose centroids (centers of gravity) are the most cosine-similar
- Average-link
  - Average cosine between pairs of elements

#### Single Link Agglomerative Clustering

Use maximum similarity of pairs:

$$sim(c_i,c_j) = \max_{x \in c_i, y \in c_j} sim(x,y)$$
   
 • Can result in "straggly" (long and thin) clusters

- Can result in "straggly" (long and thin) clusters due to chaining effect.
- After merging  $c_i$  and  $c_j$ , the similarity of the resulting cluster to another cluster,  $c_k$ , is:

$$sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$$

## Single Link Example



#### Complete Link

Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$$

- Makes "tighter," spherical clusters that are typically preferable.
- After merging  $c_i$  and  $c_j$ , the similarity of the resulting cluster to another cluster,  $c_k$ , is:

$$sim((c_i \cup c_j), c_k) = min(sim(c_i, c_k), sim(c_j, c_k))$$

$$C_i$$
  $C_j$   $C_k$ 

## Complete Link Example



#### **Computational Complexity**

- In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is  $O(N^2)$ .
- In each of the subsequent *N*−2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall  $O(N^2)$  performance, computing similarity to each other cluster must be done in constant time.
  - Often  $O(N^3)$  if done naively or  $O(N^2 \log N)$  if done more cleverly

#### **Group Average**

 Similarity of two clusters = average similarity of all pairs within merged cluster.

$$sim(c_{i}, c_{j}) = \frac{1}{|c_{i} \cup c_{j}| (|c_{i} \cup c_{j}| - 1)} \sum_{\vec{x} \in (c_{i} \cup c_{j})} \sum_{\vec{y} \in (c_{i} \cup c_{j}): \vec{y} \neq \vec{x}} sim(\vec{x}, \vec{y})$$

- Compromise between single and complete link.
- Two options:
  - Averaged across all ordered pairs in the merged cluster
  - Averaged over all pairs between the two original clusters
- No clear difference in efficacy

#### Computing Group Average Similarity

Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x}$$

• Compute similarity of clusters in constant time:

$$sim(c_i, c_j) = \frac{(\vec{s}(c_i) + \vec{s}(c_j)) \bullet (\vec{s}(c_i) + \vec{s}(c_j)) - (|c_i| + |c_j|)}{(|c_i| + |c_j|)(|c_i| + |c_j|)(|c_i| + |c_j|)}$$

#### What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
  - the <u>intra-class</u> (that is, intra-cluster) similarity is high
  - the <u>inter-class</u> similarity is low
  - The measured quality of a clustering depends on both the document representation and the similarity measure used

#### External criteria for clustering quality

- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
- Assesses a clustering with respect to ground truth
   ... requires labeled data
- Assume documents with C gold standard classes, while our clustering algorithms produce K clusters,  $\omega_1, \omega_2, ..., \omega_K$  with  $n_i$  members.

#### **External Evaluation of Cluster Quality**

• Simple measure: <u>purity</u>, the ratio between the dominant class in the cluster  $\pi_i$  and the size of cluster  $\omega_i$ 

Purity
$$(\omega_i) = \frac{1}{n_i} \max_j (n_{ij}) \quad j \in C$$

- Biased because having n clusters maximizes purity
- Others are entropy of classes in clusters (or mutual information between classes and clusters)

#### Purity example



Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

# Rand Index measures between pair decisions. Here RI = 0.68



#### Rand index and Cluster F-measure

$$RI = \frac{A+D}{A+B+C+D}$$

Compare with standard Precision and Recall:

$$P = \frac{A}{A+B} \qquad \qquad R = \frac{A}{A+C}$$

People also define and use a cluster F-measure, which is probably a better measure.

#### Final word and resources

- In clustering, clusters are inferred from the data without human input (unsupervised learning)
- However, in practice, it's a bit less clear: there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents, .

Resources

#### Resources for today's lecture

- IIR 13 except 13.4
- **IIR 14**
- IIR 16 except 16.5
- IIR 17.1–17.3
  - Fabrizio Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34(1):1-47, 2002.
  - Yiming Yang & Xin Liu, A re-examination of text categorization methods. Proceedings of SIGIR, 1999.
  - Trevor Hastie, Robert Tibshirani and Jerome Friedman, *Elements of* Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, New York.
  - Open Calais: Automatic Semantic Tagging
    - Free provided by Thompson/Reuters
- Weka: A data mining software package that includes an implementation of many ML algorithms Slides by Manning, Raghavan, Schutze