Introduction to Information Retrieval

Index Construction
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Introduction to Information Retrieval
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Introduction to Information Retrieval Ch. 4

Index construction

= How do we construct an index?

= What strategies can we use with limited main
memory?
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Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Many design decisions in information retrieval are
based on the characteristics of hardware

= We begin by reviewing hardware basics
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Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Access to data in memory is much faster than access
to data on disk.

= Disk seeks: No data is transferred from disk while the
disk head is being positioned.

* Therefore: Transferring one large chunk of data from
disk to memory is faster than transferring many
small chunks.

= Disk I/O is block-based: Reading and writing of entire
blocks (as opposed to smaller chunks).

= Block sizes: 8KB to 256 KB.
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Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Servers used in IR systems now typically have several
GB of main memory, sometimes tens of GB.

= Available disk space is several (2—3) orders of
magnitude larger.

= Fault tolerance is very expensive: It’ s much cheaper
to use many regular machines rather than one fault

tolerant machine.
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Introduction to Information Retrieval Sec. 4.1

Hardware assumptions for this lecture

= symbol statistic value

=S average seek time 5ms=5x1073s

= b transfer time per byte 0.02 us=2x1073s
m processor s clock rate 10° s71

"p low-level operation 0.01 us=103s

(e.g., compare & swap a word)

- size of main memory several GB

- size of disk space 1 TB or more
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Introduction to Information Retrieval Sec. 4.2

RCV1: Our collection for this lecture

= Shakespeare’ s collected works definitely aren’ t
large enough for demonstrating many of the points
in this course.

= The collection we’ Il use isn’ t really large enough

either, but it’ s publicly available and is at least a
more plausible example.

= As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

= This is one year of Reuters newswire (part of 1995
and 1996)
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Introduction to Information Retrieval Sec. 4.2

A Reuters RCV1 document

REUTERS B

You are here: Home > News > Science > Article

Gotoa Section: U.S. International Business Markets Politics  Entertainment Technology Sports  Oddly Enouc

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

Email This Article  Print This Article | Reprints
[-] Text [+
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on

Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.
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Introduction to Information Retrieval Sec. 4.2

Reuters RCV1 statistics

= symbol statistic value
= N documents 800,000
= L avg. # tokens perdoc 200
= M terms (= word types) 400,000
- avg. # bytes per token 6

(incl. spaces/punct.)
- avg. # bytes per token 4.5

(without spaces/punct.)

- avg. # bytes per term 7.5
- non-positional postings 100,000,000
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Introduction to Information Retrieval Sec. 4.2
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Term

Recall IR 1 index construction .,

enact
julius
= Documents are parsed to extract words and these paesar
are saved with the Document ID. was
killed
)
the
capitol
brutus
killed
me
DOC 1 DOC 2 ﬁ so
let
it
be

| did enact Julius So let it be with with
Caesar | was killed Caesar. The noble caesar

the

I" the Capitol; Brutus hath told you noble

. brutus
Brutus killed me. Caesar was ambitious hath

you
caesar
was
ambitious
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Introduction to Information Retrieval Sec. 4.2

Key step

= After all documents have been
parsed, the inverted file is
sorted by terms.

4?

We focus on this sort step.
We have 100M items to sort.

Term
|

did
enact
julius
caesar
|

was
killed
i

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious
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Introduction to Information Retrieval Sec. 4.2

Scaling index construction

" |[n-memory index construction does not scale

= Can’ t stuff entire collection into memory, sort, then write
back

* How can we construct an index for very large
collections?

= Taking into account the hardware constraints we just
learned about. ..

= Memory, disk, speed, etc.

Slides by Manning, Raghavan, Schutze 13



Introduction to Information Retrieval Sec. 4.2

Sort-based index construction

= As we build the index, we parse docs one at a time.

= While building the index, we cannot easily exploit
compression tricks (you can, but much more complex)

* The final postings for any term are incomplete until the end.

At 12 bytes per non-positional postings entry (term, doc,
freg), demands a lot of space for large collections.

T =100,000,000 in the case of RCV1

"= So ... we can do this in memory in 2009, but typical
collections are much larger. E.g., the New York Times
provides an index of >150 years of newswire

Thus: We need to store intermediate results on disk.
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Introduction to Information Retrieval Sec. 4.2

Sort using disk as “memory’ ?

= Can we use the same index construction algorithm
for larger collections, but by using disk instead of
memory?

= No: Sorting T = 100,000,000 records on disk is too
slow — too many disk seeks.

= We need an external sorting algorithm.
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Introduction to Information Retrieval Sec. 4.2

Bottleneck

= Parse and build postings entries one doc at a time

* Now sort postings entries by term (then by doc
within each term)

* Doing this with random disk seeks would be too slow
— must sort T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log,N comparisons
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BSBI: Blocked sort-based Indexing

(Sorting with fewer disk seeks)

= 12-byte (4+4+4) records (term, doc, freq).
= These are generated as we parse docs.
= Must now sort 100M such 12-byte records by term.

= Define a Block|™~ 10M ssuch records

= Can easily ﬁ%uple into memory.
= Will have| 10 such blocks to start with.

= Basic idea of algorithm:

= Accumulate postings for each block, sort, write to disk.
= Then merge the blocks into one long sorted order.
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Introduction to Information Retrieval Sec. 4.2

postings

to be merged brutus  d2
- brutus d3 .

brutus d3 brutus d2 caesar dl
caesar d4 caesar dl caesar d4 merged
noble d3 julius  d1 julius  d1 postings

with d4 killed d2 killed d2

noble d3

with d4

< I

disk
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Introduction to Information Retrieval Sec. 4.2

Sorting 10 blocks of 10M records

= First, read each block and sort within:
= Quicksort takes 2N In N expected steps
" |Inourcase 2 x (10M In 10M) steps

= Exercise: estimate total time to read each block from
disk and and quicksort it.

= 10 times this estimate — gives us 10 sorted runs of
10M records each.

= Done straightforwardly, need 2 copies of data on
disk
= But can optimize this
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Introduction to Information Retrieval Sec. 4.2

BSBINDEXCONSTRUCTION( )

1 n<0

2 while (all documents have not been processed)
3 don+—n+1

4 block < PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, fp)

7 MERGEBLOCKS(f1,.. ., fn; fmerged)
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Introduction to Information Retrieval Sec. 4.2

How to merge the sorted runs?

= Can do binary merges, with a merge tree of log,10 = 4 layers.
= During each layer, read into memory runs in blocks of 10M,
merge, write back.

]
2
! » | 2 | |Merged run.
3 4
/ 3
Runs being 4

merged.
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Introduction to Information Retrieval Sec. 4.2

How to merge the sorted runs?

= Butitis more efficient to do a multi-way merge, where you
are reading from all blocks simultaneously

" Providing you read decent-sized chunks of each block into
memory and then write out a decent-sized output chunk,
then you’ re not killed by disk seeks
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Remaining problem with sort-based

algorithm

= Qur assumption was: we can keep the dictionary in
memory.

"= We need the dictionary (which grows dynamically) in
order to implement a term to termID mapping.

= Actually, we could work with term,docID postings
instead of termID,doclID postings . ..

= ...butthen intermediate files become very large.
(We would end up with a scalable, but very slow
index construction method.)
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SPIMI:

Single-pass in-memory indexing

= Key idea 1: Generate separate dictionaries for each
block — no need to maintain term-termID mapping
across blocks.

= Key idea 2: Don’ t sort. Accumulate postings in
postings lists as they occur.

= With these two ideas we can generate a complete
inverted index for each block.

" These separate indexes can then be merged into one
big index.
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Introduction to Information Retrieval Sec. 4.3

SPIMI-Invert

SPIMI-INVERT(token_stream)
1 output_file = NEWFILE()
dictionary = NEWHASH()
while (free memory available)
do token < next(token_stream)
if term(token) ¢ dictionary
then postings_list = ADD'TODICTIONARY (dictionary, term(token))
else postings_list = GETPOSTINGSLIST(dictionary, term(token))
if full(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms < SORTTERMS(dictionary)
12 WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
13 return output_file

O ~NO O & WD

= Merging of blocks is analogous to BSBI.
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Introduction to Information Retrieval Sec. 4.3

SPIMI: Compression

= Compression makes SPIMI even more efficient.
= Compression of terms
= Compression of postings

= See next lecture
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Introduction to Information Retrieval Sec. 4.4

Distributed indexing

= For web-scale indexing (don’ t try this at home!):
must use a distributed computing cluster

* |ndividual machines are fault-prone
= Can unpredictably slow down or fail

= How do we exploit such a pool of machines?
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Introduction to Information Retrieval Sec. 4.4

Web search engine data centers

= Web search data centers (Google, Bing, Baidu)
mainly contain commodity machines.

= Data centers are distributed around the world.

= Estimate: Google ~1 million servers, 3 million
processors/cores (Gartner 2007)
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Introduction to Information Retrieval

Big computation — Big machines

= Traditional big-iron box (circa 2003)
= 8 2GHz Xeons
= 64GB RAM
= 8TB disk
= 758,000 USD

= Prototypical Google rack (circa 2003)
= 176 2GHz Xeons
= 176GB RAM
= ~7TB disk
= 278,000 USD

= |n Aug 2006 Google had ~450,000 machines

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Cluster Architecture
2-10 Gbps backbone between racks

1 Gbps between
any pair of nodes
in a rack

CPU CPU CPU
Mem Mem Mem

Disk Disk Disk

Each rack contains 16-64 nodes

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

MA45: Open Academic Cluster

= Yahoo M45 cluster:
= Datacenter in a Box (DiB)

1000 nodes, 4000 cores, 3TB RAM,
1.5PB disk

High bandwidth connection to Internet

Located on Yahoo! campus

World’ s top 50 supercomputer

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Large scale computing

= Large scale computing for IR problems on
commodity hardware:

= PCs connected in a network
" Process huge datasets on many computers

= Challenges:
= How do you distribute computation?
= Distributed/parallel programming is hard
= Machines fail

= Vlap-reduce addresses all of the above

= Google’ s computational/data manipulation model
= Elegant way to work with big data

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Implications

" |mplications of such computing environment:
= Single machine performance does not matter
= Add more machines

= Machines break:

= One server may stay up 3 years (1,000 days)
= |If you have 1,000 servers, expect to loose 1/day

" How can we make it easy to write distributed
programs?

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

ldea and solution

" |dea:
* Bring computation close to the data
= Store files multiple times for reliability

= Need:

" Programming model
= Map-Reduce

" |Infrastructure — File system
= Google: GFS
= Hadoop: HDFS

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Stable storage

=" Problem:
" |If nodes fail, how to store data persistently?

= Answer:
" Distributed File System:

= Provides global file namespace
= Google GFS; Hadoop HDFS; Kosmix KFS

= Typical usage pattern
" Huge files (100s of GB to TB)
= Data is rarely updated in place
= Reads and appends are common

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Distributed File System

= Chunk Servers:
= File is split into contiguous chunks
= Typically each chunkis 16-64MB
= Each chunk replicated (usually 2x or 3x)
= Try to keep replicas in different racks

= Master node:
= a.k.a. Name Nodes in Hadoop’ s HDFS

= Stores metadata
= Might be replicated
= Client library for file access:

= Talks to master to find chunk servers
= Connects directly to chunk servers to access data

Slides by Jure Leskovec: Mining Massive 36
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Introduction to Information Retrieval

Warm up: Word Count

= We have a large file of words:
= one word per line

= Count the number of times each
distinct word appears in the file

= Sample application:

= Analyze web server logs to find popular URLs

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Warm up: Word Count (2)

= Case 1:
" Entire file fits in memory
= Case 2:

= File too large for memory, but all <word, count> pairs fit in
memory

= Case 3:

= File on disk, too many distinct words to fit in memory:

“sort datafile | unig -c

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Warm up: Word Count (3)

= Suppose we have a large corpus of documents

= Count occurrences of words:

* words (docs/*) | sort | uniq -c
= where words takes a file and outputs the words in it, one per a
line

= Captures the essence of MapReduce

" Great thingis it is naturally parallelizable

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Map-Reduce: Overview

= Read a lot of data
= Map:
= Extract something you care about

= Shuffle and Sort

= Reduce:
= Aggregate, summarize, filter or transform

= Write the result

Outline stays the same, map and reduce

change to fit the problem

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

More specifically

" Program specifies two primary methods:
= Map(k,v) > <k’, v >*
= Reduce(k’, <v >*) > <k’ ,v = >*

= All values v with same key k' are reduced
together and processed in v’ order

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Map-Reduce: Word counting

term space-based man/
machine partnership. "'The

robotics we're doing -- is what
we're going to need to do to
build any work station or
habitat structure on the moon
or Mars," said Allard Beutel.

Provided by the
programmer

(shuttle, 1)

[EnAdaavinr
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(recently,
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MapReduce: The Map Step

Input Intermediate
key-value pairs key-value pairs
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Introduction to Information Retrieval

MapReduce: The Reduce Step

Output
Key-value groups key-value pairs
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Introduction to Information Retrieval

Word Count using MapReduce

map (key, wvalue):
// key: document name; value: text of document
for each word w in value:

emit (w, 1)

reduce (key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v 1in values:
result += v
emit (result)

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Map-Reduce: Environment

" Map-Reduce environment takes care of:
= Partitioning the input data

= Scheduling the program’s execution across a set of
machines

= Handling machine failures
= Managing required inter-machine communication

= Allows programmers without a PhD in
parallel and distributed systems to use large
distributed clusters

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Map-Reduce: A diagram

Input |Biq dOCU n+|EI+It
MAP: J' L

reads input and
produces a set of
key value pairs

Intermediate | kl:v kl:v k2:v k3:vkd:v | kd:vkSv | kd:v | kl:vk3:v

Group by '

Collect all pairs 1
with same key

Grouped |kl:v,v,v,v v |k3:v,v | kd:v,vyv [kSiv

Reduce:
Collect all values
belonging to the

key and output
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Introduction to Information Retrieval

Map-Reduce

" Programmer specifies:

= Workflow:

nodes Shuffle
All k'v’-pairs with a given k’ are sent to
the same reduce
Reduce processes all k'v'-pairs grouped Reduce 0 Reduce 1
by key into new k''v''-pairs
Write the resulting pairs to files
= All phases are distributed with many @ @

Map and Reduce and input files @' @ @
Read inputs as a set of key-value-pairs

Map transforms input kv-pairs into a Map 0 Map 1 Map 2
new set of k'v'-pairs

Sorts & Shuffles the k'v'-pairs to output

tasks doing the work

Slides by Jure Leskovec: Mining Massive
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Introduction to Information Retrieval

Map-Reduce: in Parallel

r-r—-r—-—-=—-—"=-=-=== A r—-—--—-—=-—-=-== = r—-—---—-=--=-=-= -
| Map Task 1 I | Map Task 2 I | Map Task 3 I
| L b :
| L b :
| L b :
| L b :
| L b :
| L b :
1| klvklvk2y | 1 k3o kduy kd:wv ksv |l I kd v klwv k3w |
| Partitioning Function | | Partitioning Function I | Partitioning Function I

Sort and Group
k2:v kdov vy k5:v

Sort and Group
klvvvy | k3w

50

Reduce Task 1 Reduce Task 2

________________
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Introduction to Information Retrieval

Implementation

= A program forks a master process and many worker
processes.

" |nput is partitioned into some number of splits.

= Worker processes are assignhed either to perform
Map on a split or Reduce for some set of
intermediate keys.
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Introduction to Information Retrieval

Data flow

" |nput and final output are stored on a distributed file
system:

= Scheduler tries to schedule map tasks “close” to physical
storage location of input data

" |ntermediate results are stored on local FS of map
and reduce workers

= Qutput is often input to another map reduce task

Slides by Jure Leskovec: Mining Massive
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Distributed Execution Overview

\
4 \
/ \
’
7/

fork . fork » fork
/?nSSIgI’/l// - assign
/- map.- “reduce
x,/ \\\ \\

<

‘4

Input Data ,
write

local
write

remote
read,
sort
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Introduction to Information Retrieval

Responsibility of the Master

Assign Map and Reduce tasks to Workers.

2. Check that no Worker has died (because its
processor failed).

3. Communicate results of Map to the Reduce tasks.
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Introduction to Information Retrieval

Coordination

= Master data structures:

= Task status: (idle, in-progress, completed)

= |dle tasks get scheduled as workers become available

= When a map task completes, it sends the master the

location and sizes of its R intermediate files, one for each
reducer

= Master pushes this info to reducers

= Master pings workers periodically
to detect failures

Slides by Jure Leskovec: Mining Massive
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Failures

= Map worker failure

= Map tasks completed or in-progress at worker are reset to
idle

= Reduce workers are notified when task is rescheduled on
another worker

= Reduce worker failure
" Only in-progress tasks are reset to idle

= Master failure
= MapReduce task is aborted and client is notified

Slides by Jure Leskovec: Mining Massive
Datasets
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Introduction to Information Retrieval

How many Map and Reduce jobs?

= M map tasks, R reduce tasks

= Rule of thumb:

= Make M and R much larger than the number of nodes in
cluster

* One DFS chunk per map is common

* Improves dynamic load balancing and speeds recovery
from worker failure

= Usually R is smaller than M
" because output is spread across R files

Slides by Jure Leskovec: Mining Massive 56
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Introduction to Information Retrieval

Task Granularity & Pipelining

" Fine granularity tasks: map tasks >> machines
* Minimizes time for fault recovery

= Can pipeline shuffling with map execution
= Better dynamic load balancing

Process Time >

User Program |MapReduce() ... wait ...

Master Assign tasks to worker machines...

Worker 1 Map 1 Map 3

Worker 2 Map 2

Worker 3 Reduce 1
Worker 4 Reduce 2

Slides by Jure Leskovec: Mining Massive

Datasets >/



Introduction to Information Retrieval Sec. 4.4

Distributed indexing

= Maintain a master machine directing the indexing
job — considered “safe”.

" Break up indexing into sets of (parallel) tasks.

= Master machine assigns each task to an idle machine
from a pool.

Slides by Manning, Raghavan, Schutze 58



Introduction to Information Retrieval Sec. 4.4

Parallel tasks

= We will use two sets of parallel tasks
= Parsers

" |nverters

= Break the input document collection into splits

= Each split is a subset of documents (corresponding to
blocks in BSBI/SPIMI)
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Introduction to Information Retrieval Sec. 4.4

Parsers

= Master assigns a split to an idle parser machine

= Parser reads a document at a time and emits (term,
doc) pairs

= Parser writes pairs into j partitions

= Each partition is for a range of terms’ first letters
" (e.g., a-f, g-p, g-z) — herej = 3.

= Now to complete the index inversion
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Inverters

= An inverter collects all (term,doc) pairs (= postings)
for one term-partition.

= Sorts and writes to postings lists
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Data flow
aiffg,n~f*’[MaSter}‘"“““*~~~~@~§§_’i\g\’i’_“ Postings
| al.f g;p q-Z 0/3
spillts f gg_p 0-2 SE
gﬁgse Segment files gleqzll;ge
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MapReduce

* The index construction algorithm we just described is
an instance of MapReduce.

* MapReduce (Dean and Ghemawat 2004) is a robust
and conceptually simple framework for distributed
computing ...

= ... without having to write code for the distribution
part.

* They describe the Google indexing system (ca. 2002)
as consisting of a number of phases, each
implemented in MapReduce.
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MapReduce

" |ndex construction was just one phase.

= Another phase: transforming a term-partitioned
index into a document-partitioned index.

* Term-partitioned: one machine handles a subrange of
terms

" Document-partitioned: one machine handles a subrange of
documents

= As we’ |l discuss in the web part of the course, most
search engines use a document-partitioned index ...
better load balancing, etc.

Slides by Manning, Raghavan, Schutze 64



Schema for index construction in

MapReduce

= Schema of map and reduce functions

= map: input = list(k, v) reduce: (k,list(v)) - output
= |nstantiation of the schema for index construction
* map: collection - list(termID, docID)

= reduce: (<termlD1, list(docID)>, <termID2, list(docID)>, ...) =
(postings list1, postings list2, ...)
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Example for index construction

= Map:
= d1:Ccame, Cc ed.
= d2:Cdied. >

= <C,d1>, <came,d1>, <C,d1>, <c ed, d1>, <C, d2>,
<died,d2>

= Reduce:

= (<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, <c’ ed,
(d1)>) = (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,
(d1:1)>, <c’ ed,(d1:1)>)
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Example: Join By Map-Reduce
= Compute the natural join R(A,B) > S(B,C)

= Rand S are each stored in files

= Tuples are pairs (a,b) or (b,c)

A B B | C
b, C4 dj C4

ay b,
2 b, X b, C, — a, C,
5 b, b, Cs a, Cy
a, b,
S
R
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Map-Reduce Join

= Use a hash function h from B-values to 1...k

= A Map process turns:
= Each input tuple R(a,b) into key-value pair (b,(a,R))
= Each input tuple S(b,c) into (b,(c,S))

= Map processes send each key-value pair with key b to
Reduce process h(b)
= Hadoop does this automatically; just tell it what k is.

= Each Reduce process matches all the pairs (b,(a,R)) with
all (b,(c,S)) and outputs (a,b,c).
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Cost Measures for Algorithms

= |n MapReduce we quantify the cost of an
algorithm using

1. Communication cost = total I/O of all processes

2. Elapsed communication cost = max of I/O along any
path

3. (Elapsed) computation cost analogous, but count
only running time of processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)
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Example: Cost Measures

= For a map-reduce algorithm:

* Communication cost = input file size + 2 x (sum of the

sizes of all files passed from Map processes to Reduce
processes) + the sum of the output sizes of the Reduce
processes.

= Elapsed communication cost is the sum of the largest

input + output for any map process, plus the same for any
reduce process

J. Leskovec, A. Rajaraman, J. Ullman:
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What Cost Measures Mean

= Either the |/O (communication) or processing
(computation) cost dominates

" |gnore one or the other

= Total cost tells what you pay in rent from
your friendly neighborhood cloud

= Elapsed cost is wall-clock time using parallelism

J. Leskovec, A. Rajaraman, J. Ullman:
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Cost of Map-Reduce Join
= Total communication cost
=O(|R|+|S[+|R>=S])
= Elapsed communication cost = O(s)
= We're going to pick k and the number of Map processes so

that the 1/O limit s is respected

= We put a limit s on the amount of input or output that any
one process can have. s could be:
= What fits in main memory
= What fits on local disk

= With proper indexes, computation cost is linear in
the input + output size
= So computation cost is like comm. cost

J. Leskovec, A. Rajaraman, J. Ullman:
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Implementations

= Google
= Not available outside Google
= Hadoop
= An open-source implementation in Java

= Uses HDFS for stable storage
= Download: http://lucene.apache.org/hadoop/

= Aster Data

" Cluster-optimized SQL Database that also implements
MapReduce
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Cloud Computing

= Ability to rent computing by the hour
= Additional services e.g., persistent storage

* Amazon’s “Elastic Compute Cloud” (EC2)

= Aster Data and Hadoop can both be run on EC2

Slides by Jure Leskovec: Mining Massive
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Refinement: Backup tasks

" Problem:
= Slow workers significantly lengthen the job completion
time:
= QOther jobs on the machine
= Bad disks
= Weird things

= Solution:
= Near end of phase, spawn backup copies of tasks

= Whichever one finishes first “wins”

= Effect:
* Dramatically shortens job completion time
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Refinements: Backup tasks

= Backup tasks reduce job time
= System deals with failures

Normal No backup tasks 200 processes killed
20000 — Done: 20000 = Done: 20000 — Done:
m 839 s 1235 s 886 s
g
~ 10000 —“ 10000 10000 —
5
o
L
= 0 T T T T T T 0 1 I T I T T 0 I 1!-7 T I T T T
0 200 400 600 80D 10001200 0 200 400 600 800 10001200 0 200 400 600 800|10001200
5 20000 — 20000 — 20000
o
E
o 10000 10000 — 10000 —
P
Q.
2
w 0 I | I | I 1 0 1 | I | I T 0 vyt | 1 I I
0 200 400 600 80D 10001200 0 200 400 600 800 10001200 0 200 400 600 800|10001200
~ 20000 — 20000 — 20000
<
[vn]
>
10000 — 10000 — 10000 —
5
Q.
5
o 0 I | I | I 1 0 1 | I | I 1 0 | 1 | I | I
0 200 400 600 BOO 10001200 0 200 400 600 BOO 10001200 0 200 400 600 800 10001200
Seconds Seconds Seconds
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Refinements: Combiners

= Often a map task will produce many pairs of the
form (k,v1), (k,v2), ... for the same key k

= E.g., popular words in Word Count

= Can save network time by pre-aggregating at
mapper:
= combine(k1, list(vl)) = v2
= Usually same as the reduce function

= Works only if reduce function is
commutative and associative

Slides by Jure Leskovec: Mining Massive
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Refinements: Partition Function

Inputs to map tasks are created by contiguous splits
of input file

Reduce needs to ensure that records with the same
intermediate key end up at the same worker

System uses a default partition function:
"= hash(key) mod R

Sometimes useful to override:

" E.g., hash(hostname(URL)) mod R ensures URLs from a
host end up in the same output file

Slides by Jure Leskovec: Mining Massive
Datasets
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Dynamic indexing

= Up to now, we have assumed that collections are
static.

* They rarely are:
= Documents come in over time and need to be inserted.

" Documents are deleted and modified.
= This means that the dictionary and postings lists
have to be modified:
" Postings updates for terms already in dictionary
= New terms added to dictionary
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Simplest approach

= Maintain “big’ main index
= New docs go into “small” auxiliary index
= Search across both, merge results

= Deletions
= |nvalidation bit-vector for deleted docs

= Filter docs output on a search result by this invalidation
bit-vector

= Periodically, re-index into one main index
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Issues with main and auxiliary indexes

"= Problem of frequent merges — you touch stuff a lot
" Poor performance during merge

= Actually:

= Merging of the auxiliary index into the main index is efficient if we
keep a separate file for each postings list.

= Merge is the same as a simple append.
= But then we would need a lot of files — inefficient for OS.

= Assumption for the rest of the lecture: The index is one big
file.
" |n reality: Use a scheme somewhere in between (e.g., split

very large postings lists, collect postings lists of length 1 in
one file etc.)
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Logarithmic merge

= Maintain a series of indexes, each twice as large as
the previous one

= At any time, some of these powers of 2 are instantiated
= Keep smallest (Z,) in memory
= Larger ones (l,, I, ...) on disk
= |f Z, gets too big (> n), write to disk as |,
= or merge with |, (if |, already exists) as Z,
= Either write merge Z, to disk as I, (if no |,)
= Or merge with I, to form Z,
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LMERGEADDTOKEN(indexes, Zy, token)
1 Zy < MERGE(Zy, {token})

2 if |Zo|=n
3 then for / — 0 to oo
4 do if /; € indexes
5 then Z; .1 — MERGE(/;, Z;)
6 (Zi+1 is a temporary index on disk.)
7 indexes «— indexes — {l;}
8 else [ — Z; (Z; becomes the permanent index I;.)
9 indexes «— indexes U {I;}
10 BREAK
11 Zo — ()
LOGARITHMICMERGE()

Zo— 0  (Z is the in-memory index.)
indexes «— ()
while true

do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())
Slides by Manning, Raghavan, Schutze 83
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Logarithmic merge

= Auxiliary and main index: index construction time is
O(T?) as each posting is touched in each merge.

" Logarithmic merge: Each posting is merged O(log T)
times, so complexity is O(T log T)

= So logarithmic merge is much more efficient for
index construction

= But query processing now requires the merging of
O(log T) indexes

* Whereas it is O(1) if you just have a main and auxiliary
index
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Further issues with multiple indexes

= Collection-wide statistics are hard to maintain

= E.g., when we spoke of spell-correction: which of
several corrected alternatives do we present to the
user?

= We said, pick the one with the most hits
* How do we maintain the top ones with multiple

indexes and invalidation bit vectors?

" One possibility: ignore everything but the main index for
such ordering

= Will see more such statistics used in results ranking
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Dynamic indexing at search engines

= All the large search engines now do dynamic
indexing

= Their indices have frequent incremental changes
= News items, blogs, new topical web pages
= Sarah Palin, ...
= But (sometimes/typically) they also periodically
reconstruct the index from scratch

= Query processing is then switched to the new index, and
the old index is deleted
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Get Search News Recaps! <

email: [

v Daily v Monthly

& Feeds and more info

’ Go )Sle | YaHoO! | Microsoft: " Columns | Marketing Searching | Ask, AOL & | Newsletters | Confe
Land Land Land Land Land Land More Lands & Feeds B) & Wel

« Local Store And Inventory Data Poised To Transform "Online Shopping” | Main | SEO Company,
Fathom Online, Acquired By Geary Interactive »

netkli

Click here for

Google Dance Is Back? Plus Google’s First Live Chat Recap $40 Free
& Hyperactive Yahoo Slurp Advertising

Is the Google Dance back? Well, not really, but | am noticing Google Dance-like behavior from
Google based on reading some of the feedback at a WebmasterWorld thread.

The Google Dance refers to how years ago, a change to Google's ranking algorithm often began

showing up slowly across data centers as they reflected different results, a sign of coming changes. Q SearCh M
These days Google's data centers are typically always showing small changes and differences, but the leading
the differences between this data center and this one seem to be more like the extremes of the past provider of search
Google Dances. marketing jobs

So either Google is preparing for a massive update or just messing around with our heads. As of
now, these results have not yet moved over to the main Google.com results.

PREMIUM MEMBERSHIP
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Other sorts of indexes

= Positional indexes

= Same sort of sorting problem ... just larger

= Building character n-gram indexes:
= As text is parsed, enumerate n-grams.

= For each n-gram, need pointers to all dictionary terms
containing it — the “postings .

= Note that the same “postings entry” will arise repeatedly
in parsing the docs — need efficient hashing to keep track
of this.
= E.g., that the trigram uou occurs in the term deciduous will be
discovered on each text occurrence of deciduous

= Only need to process each term once
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Resources for today’ s lecture

= Chapter 4 of lIR
= MG Chapter 5

= QOriginal publication on MapReduce: Dean and
Ghemawat (2004)

= QOriginal publication on SPIMI: Heinz and Zobel (2003)
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Reading

= Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on Large Clusters
http://labs.google.com/papers/mapreduce.html

= Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The
Google File System
http://labs.google.com/papers/gfs.html

Slides by Jure Leskovec: Mining Massive
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Resources

= Hadoop Wiki
= |ntroduction
= http://wiki.apache.org/lucene-hadoop/

= QGetting Started

= http://wiki.apache.org/lucene-hadoop/
GettingStartedWithHadoop

= Map/Reduce Overview
= http://wiki.apache.org/lucene-hadoop/HadoopMapReduce

= http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

" Eclipse Environment
= http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

= Javadoc
= http://lucene.apache.org/hadoop/docs/api/
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