Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 8

Transaction Management Overview

Chapter 17.1-17.6: Elmasri & Navathe, SED
Chapter 16.1-16.3 and 16.6: Ramakrishnan & Gehrke, 3ED

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

8-1

Overview of Transaction Processing
(Emokotrnon Etrecepyaciac AocoAnyiwyv)

We will now focus on Concurrency Control (‘(EAgyxo
TauTtoxpoviag) and Recovery Management (TexVIKEG
Avakauyng) in cases of failures

Sophisticated users. application

Unsophisticated users (customers. travel agents. etc.) programmers. DB administrators
[Web Forms] [.Application Front Ends] [SQL. Interface]
T __ '\:f " e —
_—— o =S QL CONIDANDS - - - - SRVASurmand o o
¥ |
I Plan Executor | I Parser | |
Query
I Operator Evaluator | I Optimizer I Evaluation |
Engine I
-———————W————————————
T i Files and Access Methods
Manage J,
Re
Buffer Manag M =
lL.ock =
Manage *
oncurrency Disk Space Manager)
trol DBMS

r"on O
——
THIS PARTE FHS PART
——-
Index Files ﬁ shows references
\ System Catalog
Data Files ﬂ_/ DATABASE

Lecture Outline
Transaction Management Overview

16.0) Introduction to Transactions (AocoAnwigg n
2UVaAAayEQ)

16.1) The ACID (Atomicity-Consistency-Isolation-
Durability) Properties

16.2) Transactions and Schedules (Xpovotrpoypauua)

16.3) Concurrent Executions of Transactions
(Tautoxpoveg EkTeAEoeig AocoAnyiwv) and Problems

16.6) Transaction Support in SQL

Below topics will be covered as part of subsequent lectures

16.4) Concurrency with Locks (KAgidapl£g)

16.5) Concurrency with Timestamps (Xpovoéonua)
16.7) Introduction to Crash Recovery (Avakauyn
2PaAUATWV)

8-3

Introduction to Transactions
(Elcaywyn oe AocoAnyieg)

* The concept of transaction (dbocoAnwia)
provides a mechanism for describing logical units
of database processing.

— Analogy: A transaction is to a DBMS as a process is to an
Operating System.

 Transaction Processing Systems (ZuoThuaTta
Emre€epyaoiagc AocoAnywiwyv) are systems with
large databases and hundreds of concurrent users
executing database transactions

— Examples: Airline Reservations (AepoTttopikéC KpaTtnoEIg),
Banking (E@apuoyéc Tpartrelikou Topéa), Stock Markets
(XpnuaTtiotipla), Supermarkets (Y1repayopEq),

8-4

Introduction to Transactions
(Elcaywyn oe AocoAnyieg)

 Transaction (AocoAnyia) (Xact), is an atomic (i.e., all-
or-nothing) sequence of database operations (i.e., read-
write operations).

« Itis the DBMS’s abstract view of a user program!

« A transaction (collection of actions) makes
transformations of system states while preserving the
database consistency (cuvétreia Baong) ... next slide.

. _ DB in a consistent
DB in a consistent DB may be in an state

state inconsistent state
during execution
N

_
Y
Execution of a
transaction T

8-5

Begin transaction T End transaction T

DB Consistency vs. Trans. Consistency
(2uvetTela BA vs. 2uvéetrela AoooAnyiag)

 Database Consistency (Zuvétreia Baong)

— A database is in a consistent state if it obeys all of the
Integrity Constraints (Kavéveg Akepaidtnrag) defined over it.

— Examples of Integrity Constraints:

Domain Constraints ([1ediou Opiopou): e.g., SID must be integer
Key Constraints (KAcidioU): e.g., no 2 students have the same SID

Foreign Key Constraints (=évou KAgidiou): e.g., DepartmentID in
Student must match the DepartmentID in Department’s table.

Single Table Constraints: e.g., CHECK (age>18 AND age<25)

Multiple Table Constraints:
— e.g., Create ASSERTION C CHECK ((SELECT A) + (SELECT B) < 10)

 Transaction consistency (Zuvétreia AocoAnyiag)

— Complements Database consistency by incorporating user
semantics (e.g., onuaacioAoyia 0TTw¢ opileTal atrd ToV XPROTN)

— T.C is the user’s responsibility (e.g., previous example)

8-6

Introduction to Transactions
(Elcaywyn oe AocoAnyieg)

* One way of specifying the transaction boundaries is by
specifying explicit BEGIN TRANSACTION and END
TRANSACTION statements in an application program

— Transaction Example in MySQL
START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

— Transaction Example in Oracle (similar with SQL Server)

* When you connect to the database with sqlplus (Oracle command-line utility that runs
SQL and PL/SQL commands interactively or from a script) a transaction begins.

« BEGIN | SET AUTOCOMMIT OFF | insert... ; insert... ; update... ; commit; exit; END;
— Transaction Example in C: See Next Slide

Note that the given example has no explicit START/END
statements as the whole program is essentially 1 transaction (as
the previous example with Oracle’s sqlplus utility.

8-7

Transaction Consistency
Example with Embedded SQL

] Consider an airline reservation example with the relations™:
* The below example shows a Transaction FLIGHT(FNO, DATE, SRC, DEST, STSOLD)

constraint (not captured by ICs) CUST(CID, ADDR)

i FC(FNO, DATE, CID, SPECIAL)
main {

EXEC SQL BEGIN DECLARE SECTION; // define C host program variables (accessible in SQL environment)
char flight_no[6], customer_id[20]; // these host-language variable are prefixed with “:” in SQL statements
char day;

EXEC SQL END DECLARE SECTION; .)
Sell a seat on a given flight and date by

scanf(“%s %d %s”, flight_no, day, customer_id); increasing the SeaTSOLD attribute
EXEC SQL UPDATE FLIGHT/ Store the sale in the Flight-
SET STSOLD = STSOLD + 1 Customer table

WHERE FNO = :flight_no AND DATE = :day;

................ DB-ininconsistent state-------- -, only the first action is executed then

ﬁ\ﬁEOCFSCC("F-N':SEgE 1D, SPECIAL) / relations FLIGHT and FC will be inconsistent
VALUES(:flight_no, :day, :customer_id, null); > Although not a concur_rent proqram, we

need to ensure transaction consistency
printf(“Reservation completed”); (all-or- -nothing)!

return(0); :
urn(0) * We make some simplifying assumptions regarding the schema and constraints 8-8

Introduction to Transactions
(Elcaywyn oe AocoAnyieg)

Things get even more complicated if we have several
DBMS programs (transactions) executed concurrently.

Why do we need concurrent executions?

— It is essential for good DBMS performance!

- Disk accesses are frequent, and relatively slow
- Overlapping I/0 with CPU activity increases throughput and response time.

What is the problem with concurrent transactions?

— Interleaving (MapeuBaAAovracg) transactions might lead the system

to an inconsist state (like previous example):

« Scenario: A Xact prints the monthly bank account statement for a user U (one bank
transaction at-a-time).Before finalizing the report another Xact withdraws $X from user U.

+ Result: Although the report contains an updated final balance, it shows nowhere the bank
transaction that caused the decrease (unrepeatable read problem, explained next)

A DBMS guarantees that these problems will not arise.

— Users are given the impression that the transactions are executed

sequentially (oeipiaka), the one after the other. 8.9

Introduction to Transactions
(Elcaywyn oe AocoAnyieg)

State Diagram for Transaction Execution
(Alaypaupa KargoTacewyv yia Tnv EKTEAEON AocoAnyiwv)

/\ WRITE

BEGIN V\J END
TRANSACTION s TRANSACTION PARTIALLY\ COMMIT
COMMITTED

»(_ COMMITTED

I

ABORT

Active: When Xact begins FAW@

Partially Committed: When Xact ends, several recovery checks take place
making sure that the DB can always recover to a consistent state

Failed: If Xact aborts for any reason (rollback might be necessary to return
the system to a consistent state)

Committed: After partial committed checks are successful. Once committed
we never return (roll-back) to a previous state

n

8-10

The ACID properties
(O110101nTEC ACID)

What are the fundamental (BspeAiwdeIg) properties that a
DBMS must enforce so that data remains consistent (in
the face of concurrent access & failures)?

A DBMS needs to enforce four (4) properties:
Atomicity — Consistency — Isolation - Durability
ATOMIKOTNTAO — ZUVETTEIA - ATTOMOVWON — MovipoTnTa

Jim Gray defined the key transaction properties of a reliable
system in the late 1970.

Acronym ACID was coined by Reuter and Haerder in 1983

- Reuter, Andreas; Haerder, Theo "Principles of Transaction-Oriented
Database Recovery". ACM Computing Surveys (ACSUR) 15 (4): pp.

287-317, 1983 »

The ACID properties

(O110101nTEC ACID)
1. Atomicity (AtopikéTnta): All or nothing!

- An executing transaction completes in its entirety (i.e., ALL) or it is
aborted altogether (i.e., NOTHING).

- e.g., Transfer_Money(Amount, X, Y) means i) DEBIT(Amount, X);
i) CREDIT(Amount, Y). Either both take place or none.

- Reasons for Incomplete Transactions
- Anomaly Detection (e.g., Constraint violation) or System Crash (e.g., power)

- Responsibility: Recovery Manager (use log file to record all writes)

2. Consistency (ZuveéTreia): Start & End Consistent!

- If each Transaction is consistent, and the DB starts consistent,
then the Database ends up consistent.

- If a transaction violates the database’s consistency rules, the
entire transaction will be rolled back and the database will be
restored to a state consistent with those rules

- Responsibility: User (DB only enforcing IC rules) 8-12

The ACID properties
(O110101nTEC ACID)

3. Isolation (ATTopévwon): See your own data only!

- An executing transaction cannot reveal its (incomplete) results

before it commits.
- Consequently, the net effect is identical to executing all

transactions, the one after the other in some serial order.

. e.g., if two transactions T1 and T2 exists, then the output is guaranteed to be
either T1, T2 or T2, T1 (The DBMS cannot guarantee the order of execution, that

is the user’s job!) ... see example next page
- Responsibility: Lock Manager (i.e., Concurrency Control Manager)

4. Durability (MovipotnTta): DBMS Cannot Regret!

— Once a transaction commits, the system must guarantee that the
results of its operations will never be lost, in spite of subsequent

failures.
— Responsibility: Recovery Manager (use log file to record all writes)

8-13

ACID vs. BASE

ACID BASE <_

RDBMS gOId ’
: 5 Basically
standaxd Atomicity Avaiiable
Consistency Soft State
, Eventually
olation Consistent

Durability In chemistry, Base is opposite to ACID

https://medium.com/analytics-vidhya/significance-of-acid-vs-base-vs-cap-
philosophy-in-data-science-2cd1f78200ce

8-14

ACID vs. BASE (and CAP

ACID

BASE

Provides Vertical Scaling

Provides Horizontal Scaling

There is also the CAP Theorem in the

Strong Consistency

Weak Consistency — Stale Data OK

NoSQL world: you can only choose 2

Isolation

Last Write Wins, availability first

out of 3 in a distributed system:

Transaction

Programmer Managed

Available/Consistent

Available/Partition Tolerant

Consistency

Robust Database/Simple Code

Simpler Database, Harder Code

All clients see the

Focus on “Commit”

Best Effort

same view of data,
even right after

Nested Transactions

Approximated Answers

N

update or delete

Less Availability

Aggressive (optimistic)

Conservative (pessimistic)

Simpler

Difficult Evaluation(i.e Schema)

Faster, Easier evolution

High Maintenance Cost

Low Maintenance Cost

Expensive Joins and Relationship

Free from joins and Relationship

Examples: Oracle, MySQL, SQL
Server, etc.

Example : DynamoDB, Cassandra, CouchDB,
SimpleDB etc.

S5QLServer MemCact
CA cp
Availability 2 Partitioning
Allcientscanfinda AP Tne system continues

replica of data, even
in case of partial
node failures

to work as expected,
even in presence of
partial network failure

CouchDB
8-15

Notation for Transactions
(2nueloypagia yia AoocoAnWieg)

« Actions executed by a transaction include reads
and writes of database objects

 Notation

— R¢(O): The Transaction T Reads an Object O.
— W+(O): The Transaction T Writes an Object O.

« When Transaction is clear in context we shall omit the T
« Although written, the data is in really pending until committed.

— Commit;: Complete successfully writing data to disk
— Abort;: Terminate and undo all carried out actions

« Assumptions

— Transaction Communication only through the DBMS

— Database Objects: Static Collection (i.e., tables, etc. not
added/removed -... dynamic case more-complex) 816

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpOypauua)

 Schedule (XpovoTtrpoypauua)

— List of actions (read, write, abort, or commit) from a set
(opadag) of transactions (T1, T2, ...) where the order
of actions inside each transaction does not change.

* e.g., if T1=R(A),

W(A) then W(A), R(A) is not the same schedule

(as it is in opposite order)

Schedule

T1

T2

R(A)
W(A)

R(C)
W(C)

R(B)
W(B)

* Note that the DBMS might carry out
other actions as well (e.g., evaluate
arithmetic expressions) .

* Yet these do not affect the other
transactions, thus will be omitted from
our presentation

» We shall introduce Commits/Aborts
subsequently. 817

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpOypauua)

« Serial Schedule (Zs1p1aké XpovoTrpoypauua)

— A schedule in which the different transactions are NOT
interleaved (i.e., transactions are executed from start to
finish one-by-one)

Serial Schedule Serial Schedule
T1 T2
T1 L N! Possible
""""""""""" Serial Schedules
R(A R(B) ’
VV((A)) W(B) where N the
R(B) R(A) number of Xacts
W(B) W(A)

8-18

Problems due to Interleaved Xact
(MpoBAnuata atro Tnv lNapeuBoAn AocoAnyiwv)

Problems that arise when interleaving Transactions.
* Problem 1: Reading Uncommitted Data (WR Conflicts)

» Reading the value of an uncommitted object might yield an inconsistency
— Dirty Reads or Write-then-Read (WR) Conflicts. W
— In Greek: AcuveTreic avayvwaoelg R

* Problem 2: Unrepeatable Reads (RW Conflicts)

* Reading the same object twice might yield an inconsistency
— Read-then-Write (RW) Conflicts (] Write-After-Read) R
— In Greek: Mn-eTavaAfWIPES AvayvVwOoEIG
* Problem 3: Overwriting Uncommitted Data (WW Conflicts)

« Overwriting an uncommitted object might yield an inconsistency
— Lost Update or Write-After-Write (WW) Conflicts. W
— In Greek: ATTWAEIEC EVNUEPWOEWV W
* Remark: There is no notion of RR-Conflict as no object is changed 444

R
W

Reading Uncommitted Data (WR Conflicts)
(ACUVETTEIC AVAYVWOEIC)

‘Reading the value of an uncommitted object yields an inconsistency”
* To illustrate the WR-conflict consider the following problem:
T1: Transfer $100 from Account A to Account B
T2: Add the annual interest of 6% to both A and B.

(Correct)Serial Schedule (Correct)Serial Schedule WR-Conflict (Wrong)
Trace T T2 Trace T T2 Trace T T2
R(A) R(A) R(A)

A=A-100 W(A) A=A*1.06 W(A) A=A-100 W(A)—| Dirty Read

R(B) R(B) R(A)
B=B+100 W(B) B=B*1.06 W(B) A=A*1.06 W(A)
R(A) R(A) R(B)
A=A*1.06 W(A) A=A-100 W(A) B=B*1.06 W(B)
R(B) R(B) R(B)
B=B*1.06 W(B) B=B+100 W(B) B=B+100 W(B)

Problem caused by the WR-Conflict? Account B was credited with
the interest on a smaller amount (i.e., 100% less), thus the result is not
equivalent to the serial schedule 8-20

Unrepeatable Reads (RW Conflicts)
(Mn-eTTavaANWIMEC avayvwaoEIC)

‘Reading the same object twice yields an inconsistency”

* To illustrate the RW-conflict consider the following problem:
T1: Print Value of A

T2: Decrease Global counter A by 1.

RW-Conflict (Wrong)

Trace T T2
A=10 R(A) Writp-after-Read
A=10 R(A) ;
N Note that if | read at
A=A-1=9 W(A)

=9 R(A)\\this point we would

see 9 rather than
10 (i.e., read is
unrepeatable)

Problem caused by the RW-Conflict?

Although the “A” counter is read twice within T1 (without
any intermediate change) it has two different values
(unrepeatable read)! ... what happens if T2 aborts?

= F1-hasishown arr ineorrect result. .

Overwriting Uncommitted Data (WW Conflicts)
(ATTWAEIEC EVNUEPWOEWV)

“Overwriting an uncommitted object yields an inconsistency”

To illustrate the WW-conflict consider the following problem:
Constr: Salary of employees A and B must be kept equal
T1: Set Salary to 1000; T2: Set Salary equal to 2000

(Correct)Serial Schedule (Correct)Serial Schedule WW-Conflict (Wrong)
Trace T T2 Trace T T2 Trace T T2
R(A) R(A) R(A)

A=1000 W(A) A=2000 W(A) A=1000 W(A). |LostUpdate

R(B) R(B) \R(A)
B=1000 W(B) B=2000 W(B) A=2000 W(A)
R(A) R(A) R(B)
A=2000 W(A) A=1000 W(A) B=2000 W(B)
R(B) R(B) R(B) Lost Update
B=2000 W(B) B=1000 W(B) B=1000 W(B

Problem caused by the WW-Conflict?
Employee “A” gets a salary of 2000 while employee “B” gets a salary of 1000,

thus result is not equivalent to the serial schedule! 8.2

Lecture Roadmap
Transactions and Schedules
« 16.2) Transactions and Schedules (Xpovotrpoypauua)

— Serial Schedule (Zeipiaké Xpovotrpoypaupua) ... one after the other...

— Complete Schedule (MAQpeg Xpovotrpoypappa) ... with Commit, Abort
« 17.1) Serializability (Zcipiotroino1uoTNTQ)

— “Correctness Measure” of some Schedule

— Why is it useful? It answers the question: “Will an interleaved
schedule execute correctly”

— i.e., a Serializable schedule will execute as correctly as a serial
schedule ... but in an interleaved manner!

 17.1) Recoverability (ETTavagepoinotnra)
— “Recoverability Measure” of some Schedule.

— Why is it useful? It answers the question: “Do we need to rollback

a some (or all) transactions in an interleaved schedule after some
Failure (e.g., ABORT)”

— |.e., iIn a Recoverable schedule no transaction needs to be rolled

back (diadikacia eTIoTPOPRG) once committed! 8-97

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpOypauua)

« Serial Schedule (Zs1p1aké XpovoTrpoypauua)

— A schedule in which the different transactions are NOT
interleaved (i.e., transactions are executed from start to
finish one-by-one)

Serial Schedule Serial Schedule
T1 T2
" [A N! Possible
R(B) Serial Schedules,
\7\/(';) W(B) where N the
R(B . R(A) number of
VV((B)) W(A) Transactions

8-29

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpOypauua)
« Complete Schedule (INMARpeg Xpovotrpoypaupa)

— A schedule that contains either a commit
(oAokAnpwon doocoAnwiag) or an abort (HaTaiwon
doocoAnyiag) action for EACH transaction.”

Complete Schedule Complete Schedule Complete (Serial) Schedule

R(A) R(A) R(A)
R(B) W(A) W(A)
W(A) R(B) Commit
W(B) Commit R(B)
Commit W(B) W(B)
Abort Abort Abort

* Note: consequently, a complete schedule will not contain any

active transactions at the end of the schedule 8-30

Transactions and Schedules
(AoocoAnwiec kal XpovoTTpoypauua)

Interleaved Schedules of transactions improve
performance

— Throughput (puBuamodoon): More Xacts per seconds; and

— Response Time (xpoévog amokpiong): A short transaction
will not get stuck behind a long-running transaction

Yet it might lead the DB to an inconsistent state as
we have shown

Serial schedule (ociplakd XpovotTpoypapua) is
slower but guarantees consistency (correctness)

We seek to identify schedules that are:
— As fast as interleaved schedules.

— As consistent as serial schedules
8-31

Transactions and Schedules
(AoocoAnwiec kKal XpovoTTpoypauua)

 We shall now characterize different schedules based on the
following two properties:

A. Based on Serializability (ZeipiotroinoipétnTa)
We shall ignore Commits and Aborts for this section

Characterize which schedules are correct when

concurrent transactions are executing.
« Conflict Serializable Schedule (Z&iplotTroincipoTnTa
2UYKPOUOEWV)
 View Serializable Schedule (2cipiotroinoipétnta Owewv)
B. Based on Recoverability (ETrava@epoipoTnra)
. Commits and Aborts become important for this section!

Characterize which schedules can be recovered and how easily.
« Recoverable Schedule (ETTava@époiuo Xpovotrpoypauua).
* Cascadeless schedule (Xpovotp. Xwpig 01ad1d0uEVN avakANg),
«="LiStrict'Schedules (AuoTnpd XpovoTrpoypaupa):

Conflicting Actions

Schedules based on:
Serializability

(2uykpouopeveg Npaceig)

« Conflicting Actions (Zuykpouopueveg lMNpageig)
Two or more actions are said to be in conflict if:
— The actions belong to different transactions.
— At least one of the actions is a write operation.
— The actions access the same object (read or write).

+ The following set of actions is conflicting: R

T1:R(X), T2:W(X), T3:W(X) T
« While the following sets of actions are not:

T1:R(X), T2:R(X), T3:R(X) // No Write on same object

T1:R(X), T2:W(Y), T3:R(X) // No Write on same object

8-33

Characterizing
Schedules based on:

Serializability
Recoverability

Conflict Equivalence
(looduvauia Zuykpouoewv)

« Conflict Equivalence (looduvapia ZuykpoUocewvV)

The schedules S$S1 and S2 are said to be conflict-equivalent
iIf the following conditions are satisfied:
— Both schedules $1 and S2 involve the same set of transactions

(including ordering of actions within each transaction).

— The order (&1atagn) of each pair of conflicting actions in S1 and
S2 are the same.

 Why is the order of Conflicts important? If two conflicting operations
are applied in different orders, the net effect can be different on the
database or on other transactions in the schedule. See example below:

Example: T1

T2

A=5 R(A)
A=A+1=6 W(A)

A=6
A=A+1=7

NOT Conflict
Equivalent to: T T2
Ordér of
A=5 conflictis| R(A)
A=A+1=6 differentjy W(A)
A=6
e 4
A=A+1=7 W(A)
(Alth. Result
still same)

NOT Conflict T1
Equivalent to:

T2

A=5 R(A)
A=5

A=A+1=6 W(A
A=A+1=6

Now Wrong
Result!

Order and
conflicts is
different

’ RA)

“W(A)
8-34

* Note that non-conflicting operations can arbitrary be swapped around without compromising the order.

s GONFliCt Serializability

Schedules based on:
Serializability

recoverabiity (. EIPIOTTOINCIMOTNTA ZUYKPOUCEWV)

« Conflict Serializability (Z&1p10TTOINCINO ZUYKPOUOEWV)

When the schedule is conflict-equivalent (Ic0dUvapuo ocuykpouoewv) to
some (any!) serial schedule.

Serializable == Conflict Serializable
(that definition is in some textbooks different)

Serial Schedule Serializable Schedule A Serializable Schedule B
T1 T2 T1 T2 T1 T2
R(A) R(A) 4‘on?lz<czlfsr§;me Order of conflicts R(A)
W(A W(A) \go 1. T2 same to T2;T1k/W(A)
R(B) R(A) R(A)
wE) I\ W(A) R(B)
\ R(A) R(B) W(E)
N\ W(A) W(B). WA
R(B) A R(B) R(B)
W(B) W(B) W(B)

8-35

s GONFliCt Serializability

Schedules based on:
Serializability

recoverabiity (. EIPIOTTOINCIMOTNTA ZUYKPOUCEWV)

 Why is Conflict Serializability important?

 We have already said that any serial schedule leaves the

DB in a consistent (correct) state, but is inefficient
— i.e.,, T1; T2 is as correct as T2; T1 (although they might have a different outcome).

Serializable != Serial: NOT the same thing
« Being Serializable implies:
A.That the schedule is a correct schedule.
— It will leave the database in a consistent state.

— The interleaving is appropriate and will result in a state
as if the transactions were serially executed.

B.That a schedule is a efficient (interleaved) schedule
— That parameter makes it better than Serial ©!

8-36

e |1 €StING fOr Serializability

Schedules based on:
Serializability

woeay ((EAEYYXOG ZEIPIOTTOINCIYNOTNTAG)

« How can we test if a schedule is Conflict

Serializable?

— There is a simple algorithm detailed next (that is founded on a
Precedence Graph)

 Does the DBMS utilizes this algorithm? NO

— We detail it only to gain a better understanding of the definitions.

 Why is the DBMS not using it?

— Serializability is hard to check at runtime

« Difficult to determine beforehand how the operations in a schedule will
be interleaved (as it depends on the OS)

« Subsequently, we will see that a DBMS utilizes a set of
protocols (e.g., 2PL or other Concurrency Control
techniques w/out locking), which guarantee that a
schedule is always serializable. 8-37

Precedence Graph

Schedules based on:
Serializability

(F'pdgog MNpoTtepaidTnTag)

« Why is it useful? To find if a schedule is Conflict Serializable

« A Precedence Graph (IFpagocg lNpotepaidtnrag) for a schedule S
contains:

— A node for each transaction in S

— An arch from T; to T;, if an action of T; precedes (mponyeitai) and conflicts
(ouykpouetal) with one of T;’s actions.

T1 T2 T3 Precedence Graph
R(A)
N W(A)
J \
W(A) \ Cycle exists!
\

« A schedule S is conflict serializable if and only if its
precedence graph is acyclic.

— The above schedule is not Conflict Serializable!

Ol>
($0]
o

wcens (CONFliCt Serializability Testing

Schedules based on:
Serializability

Recoverabiiy, (EAEYXOC 2.EIPIOTTOINCIUOTATAC 2ZUYKPOUTEWV)

Transaction T, Transaction T, Transaction T,

read_item(Y); Precedence Graph
read_item(2);

write_item(Y); @ Q
/write_item(Z);
@ Cycles exist!

Above schedule is NOT Conflict Serializable!
Although efficient (interleaved) the above might
NOT produce a correct result!

read_item(X);
write_item(XX

Time

_item(Z);
read_item(Y);

write_item(Y'); ™=— read_item(Y);
write_item(Y);
Y read_item(X);
write_item(X):
Wirite 1ftamld

Schedule F

|

-
N

~—

8-39

ameens |Ntroduction to Recoverability

Schedules based

ety (ElCQYWYNA 0TV ETTOVAQEPOINOTNTA)

So far we have characterized schedules based on

serializability (occipliotroinciyoTnTa), i.e.,

correctness.

Now it is time to characterize schedules based on

recoverability (eTrava@epoinoTnTa)

Why is this important?

— For some schedules it is easier to recover from
transaction failures than others.

In summary, a Recoverable Schedule

(ETTava@Epoipo XpovoTTpoypapua) is a

schedule where no transaction needs to be rolled

back (d1adikacia eTIoTPOPRS) once committed.

Commit/Abort points now become quite importar};_t‘g4

Recoverable Schedule

Schedules based on:

e (ETTava@époiuo Xpovotrpoypauua)

 Recoverable Schedule (ETravag@époiuo
XpovoTrpoypapua)
— A schedule S is recoverable if no transaction
T in S commits until all transactions T’, that

have written an item that T reads, have

committed.

* Rule: In other words, the parents of dirty reads need to
commit before their children can commit

Considerthe T1 T2 Is this schedule recoverable?
Following R(X) dirt d Answer: NO
schedule: W(X)\: y red
AR(X
R(Y)) Why NOT recoverable?
WX) » Because T2 made a dirty read and
T1 should have committed first! Commit Committed before T1 neXt Slide
Abort . .
explains why this is a problem ...

8-45

Ch t g

SERRES Recoverable Schedule
s bLt.yu(E'ITGVG(PﬁpGIHO XPOVOTTPOYPAUa)

 But why is the schedule Nonrecoverable (Mn-
ETTAVAPEPOTINO)?
* Because when the recovery manager rolls
back (step a) T1 then A gets its initial value.

* But T2 has already utilized this wrong value
and committed something to the DB

 The DB is consequently in an inconsistent

state! T | T2
R(X) .
W((X))\dlrty read
R(Y)
W(X) B) Now DB is inconsistent!
Roll b Commit ecause X was committed based
a) Roll back™ Abort on T1’s aborted transaction)

Nonrecoverable 8-46

Recoverable Schedule

Schedules based on:

Serializability

ool ETTAVAPEPTINO XPOVOTTPOYPAUMA)

« How can we make the Schedule Recoverable?
Initial Unrecoverable Schedule

T1 T2
ROX)
w(X) dirty read
\&R(X)
R(Y)
wx) Nonrecoverable
Commit
Abort
Recoverable Schedule A Recoverable Schedule B
T1 T2 T1 T2
"7\’((XX)) dirty read R(X)
R(X)
\k R(X) < W(X) 1RT
R(Y) R(Y) Not Seriplizable
W(X) W(X) (order of conflicting actions has
(Abort Commit changed)
Commit Abort
Commit after parent of dirty read Remove Dirty Read

8-47
Recoverable Recoverable

caracterzndOther Schedules based on Recoverability

Schedules based on:

e vAA XpoVOTTpOYpAppaTa faon ETravagepoiuotntag)

« There are more strict types of Schedules
(based on the Recoverability properties)

— Cascadeless schedule (Xpovotrpoypauua Xwpeig
O01a0100uEVN aVvAKANON):

(or Schedule that Avoids Cascading Rollbacks)
» Refers to cases where we have aborts.
— Strict Schedules (AucTnpo XpovoTtrpoypauua)
* These schedules are very simple to be recovered!
» Thus, the DBMS prefers this class of Schedules.

All schedules

Recoverable

Avoid Cascading Aborts
Strict

Serial

8-48

wnees (G aScadeless Schedule

Schedules based on:

Recoverabilitf XPOVOTTPOYPOAMMA XWPIG O1ad1d0uEVN avAKANCON)

 Cascadeless schedule (XpovoTrpoypauua XWEIg
O0100100uevn avakAnon): a Schedule that Avoids
Cascading Rollbacks)
— One where a rollback does not cascade to other Xacts
— Why is this necessary? Rollbacks are Costly!

— How can we achieve it? Every transaction reads only
the items that are written by committed transactions.

T1 T2
R(X) :
W(X) \az\dlrty re
T R(X)
R(Y)
W(X)
b) Roll back W(Y) c) (Cascade)
Abort We need to Roll
Commit back T2 as well!

NOT Cascadeless (but Recoverable) 540

Characterizing Cascadeless Schedule

Schedules based on:

Serializability

Recoverabilitk KPOVOTTPOYPOAMMA XWPIG O1ad100uEVN avAKANON)

* Let us turn the previous example into a
Cascadeless Schedule

— Recall, in order to get a Cascadeless Schedule, every
transaction must read only committed data

Cascadeless Schedule Another Cascadeless Schedule

T1 | T2 T1 | T2

R(X) R(X)

W(X) W(X)

o) b) Now T2 reads the X | ") | o

Abort value that existed before yyy)

a) Roll back R(X) T1 started. Abort

W(X) Commit
Commit

All schedules

Recoverable

Avoid Cascadina Aboris
Strict

Serial

... but not strict

8-50

Characterizing St ri Ct S c h e d u I e

Schedules based on:
Serializability

(AuoTnpo XpovoTTpOypauua)

« Strict Schedule (AuocTnpo Xpovotrpoypaupa):
A schedule is strict if overriding of uncommitted data is not allowed.

« Formally, if it satisfies the following conditions: T
— Tjreads a data item X after Ti has terminated (aborted or committed) \Tj
— Tj writes a data item X after Ti has terminated (aborted or committed)

* Why is this necessary? Eliminates Rollbacks!

— If a schedule is strict, a rollback can be achieved simply by
resetting the Xact variables to the value before its start value,

e.g.,
Cascac?eless but NOT Strict c¢) Why is this a problem?

T1 T2 Because X now became again
b) Rollbagk” !/ X=9 9 rather than X=8 (committed)!
X=9 n¢w W(X,5)
W(X,8) a) Changing an item that
Commithas not been committed 8.51

Abor yet{X=8-now)

«seens —(CH@racterizing Schedules

Schedules based on:

<<

Serializability

recoveratiity (XAPOAKTNPICOVTAG XPOVOTTPOYPAUHATA) L

* Venn Diagram lllustrating the different ways to
characterize a Schedule based on
Serializability and Recoverability

. R A All Schedules |
I[View Serializable |
I a2 \ I
i Contflict Serializable | [
‘Al NN . LS ﬁ --------- I I N .
:,‘ sq| S5 | s6 ~ Rekoverable | | Focus of
| r ——t— | DB
yscading Abort |
:, ﬁS‘):v 3 | 59 Avold Cgscadirg NN Schedules
I : su :
:. S1§| S11 812 Serial |: |
1| | |
I|L — J/ ‘I
L N I B BN BEN BN BEE BEE BEN BN BN BEN BEN BN B i- - R

8-52

